Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 223, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424499

RESUMO

BACKGROUND: Switchgrass (Panicum virgatum L.) is a warm-season perennial (C4) grass identified as an important biofuel crop in the United States. It is well adapted to the marginal environment where heat and moisture stresses predominantly affect crop growth. However, the underlying molecular mechanisms associated with heat and drought stress tolerance still need to be fully understood in switchgrass. The methylation of H3K4 is often associated with transcriptional activation of genes, including stress-responsive. Therefore, this study aimed to analyze genome-wide histone H3K4-tri-methylation in switchgrass under heat, drought, and combined stress. RESULTS: In total, ~ 1.3 million H3K4me3 peaks were identified in this study using SICER. Among them, 7,342; 6,510; and 8,536 peaks responded under drought (DT), drought and heat (DTHT), and heat (HT) stresses, respectively. Most DT and DTHT peaks spanned 0 to + 2000 bases from the transcription start site [TSS]. By comparing differentially marked peaks with RNA-Seq data, we identified peaks associated with genes: 155 DT-responsive peaks with 118 DT-responsive genes, 121 DTHT-responsive peaks with 110 DTHT-responsive genes, and 175 HT-responsive peaks with 136 HT-responsive genes. We have identified various transcription factors involved in DT, DTHT, and HT stresses. Gene Ontology analysis using the AgriGO revealed that most genes belonged to biological processes. Most annotated peaks belonged to metabolite interconversion, RNA metabolism, transporter, protein modifying, defense/immunity, membrane traffic protein, transmembrane signal receptor, and transcriptional regulator protein families. Further, we identified significant peaks associated with TFs, hormones, signaling, fatty acid and carbohydrate metabolism, and secondary metabolites. qRT-PCR analysis revealed the relative expressions of six abiotic stress-responsive genes (transketolase, chromatin remodeling factor-CDH3, fatty-acid desaturase A, transmembrane protein 14C, beta-amylase 1, and integrase-type DNA binding protein genes) that were significantly (P < 0.05) marked during drought, heat, and combined stresses by comparing stress-induced against un-stressed and input controls. CONCLUSION: Our study provides a comprehensive and reproducible epigenomic analysis of drought, heat, and combined stress responses in switchgrass. Significant enrichment of H3K4me3 peaks downstream of the TSS of protein-coding genes was observed. In addition, the cost-effective experimental design, modified ChIP-Seq approach, and analyses presented here can serve as a prototype for other non-model plant species for conducting stress studies.


Assuntos
Panicum , Panicum/metabolismo , Temperatura Alta , Lisina/metabolismo , Histonas/metabolismo , Secas , Estresse Fisiológico/genética , Metilação , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
2.
BMC Genomics ; 24(1): 586, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789301

RESUMO

BACKGROUND: Tall fescue (Festuca arundinacea Schreb.) is an important cool-season perennial grass species. Hexaploid tall fescue has three distinct morphotypes used either as forage or turf purposes. Its chloroplast genome is conserved due to it being maternally inherited to the next generation progenies. To identify morphotype-specific DNA markers and the genetic variations, plastid genomes of all three tall fescue morphotypes, i.e., Continental cv. Texoma MaxQ II, Rhizomatous cv. Torpedo, and Mediterranean cv. Resolute, have been sequenced using Illumina MiSeq sequencing platform. RESULTS: The plastid genomes of Continental-, Rhizomatous-, and Mediterranean tall fescue were assembled into circular master molecules of 135,283 bp, 135,336 bp, and 135,324 bp, respectively. The tall fescue plastid genome of all morphotypes contained 77 protein-coding, 20 tRNAs, four rRNAs, two pseudo protein-coding, and three hypothetical protein-coding genes. We identified 630 SNPs and 124 InDels between Continental and Mediterranean, 62 SNPs and 20 InDels between Continental and Rhizomatous, and 635 SNPs and 123 InDels between Rhizomatous and Mediterranean tall fescue. Only four InDels in four genes (ccsA, rps18, accD, and ndhH-p) were identified, which discriminated Continental and Rhizomatous plastid genomes from the Mediterranean plastid genome. Here, we identified and reported eight InDel markers (NRITCHL18, NRITCHL35, NRITCHL43, NRITCHL65, NRITCHL72, NRITCHL101, NRITCHL104, and NRITCHL110) from the intergenic regions that can successfully discriminate tall fescue morphotypes. Divergence time estimation revealed that Mediterranean tall fescue evolved approximately 7.09 Mya, whereas the divergence between Continental- and Rhizomatous tall fescue occurred about 0.6 Mya. CONCLUSIONS: To our knowledge, this is the first report of the assembled plastid genomes of Rhizomatous and Mediterranean tall fescue. Our results will help to identify tall fescue morphotypes at the time of pre-breeding and will contribute to the development of lawn and forage types of commercial varieties.


Assuntos
Festuca , Genomas de Plastídeos , Lolium , Festuca/genética , Melhoramento Vegetal , Poaceae/genética , Lolium/genética , DNA de Plantas/genética
3.
Plant Genome ; 16(2): e20330, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37125613

RESUMO

Hairy vetch, a diploid annual legume species, has a robust growth habit, high biomass yield, and winter hardy characteristics. Seed hardness is a major constraint for growing hairy vetch commercially. Hard seeded cultivars are valuable as forages, whereas soft seeded and shatter resistant cultivars have advantages for their use as a cover crop. Transcript analysis of hairy vetch was performed to understand the genetic mechanisms associated with important hairy vetch traits. RNA was extracted from leaves, flowers, immature pods, seed coats, and cotyledons of contrasting soft and hard seeded "AU Merit" plants. A range of 31.22-79.18 Gb RNA sequence data per tissue sample were generated with estimated coverage of 1040-2639×. RNA sequence assembly and mapping of the contigs against the Medicago truncatula (V4.0) genome identified 76,422 gene transcripts. A total of 24,254 transcripts were constitutively expressed in hairy vetch tissues. Key genes, such as KNOX4 (a class II KNOTTED-like homeobox KNOXII gene), qHs1 (endo-1,4-ß-glucanase), GmHs1-1 (calcineurin-like metallophosphoesterase), chitinase, shatterproof 1 and 2 (SHP1, SHP2), shatter resistant 1-5 (SHAT1-5)(NAC transcription factor), PDH1 (prephenate dehydrogenase 1), and pectin methylesterases with a potential role in seed hardness and pod shattering, were further explored based on genes involved in seed hardness from other species to query the hairy vetch transcriptome data. Identification of interesting candidate genes in hairy vetch can facilitate the development of improved cultivars with desirable seed characteristics for use as a forage and as a cover crop.


Assuntos
Fabaceae , Vicia , Dormência de Plantas/genética , Estações do Ano , Folhas de Planta/genética
4.
Front Plant Sci ; 13: 803400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774806

RESUMO

Tall fescue is one of the primary sources of forage for livestock. It grows well in the marginal soils of the temperate zones. It hosts a fungal endophyte (Epichloë coenophiala), which helps the plants to tolerate abiotic and biotic stresses. The genomic and transcriptomic resources of tall fescue are very limited, due to a complex genetic background and outbreeding modes of pollination. The aim of this study was to identify differentially expressed genes (DEGs) in two tissues (pseudostem and leaf blade) between novel endophyte positive (E+) and endophyte-free (E-) Texoma MaxQ II tall fescue genotypes. Samples were collected at three diurnal time points: morning (7:40-9:00 am), afternoon (1:15-2:15 pm), and evening (4:45-5:45 pm) in the field environment. By exploring the transcriptional landscape via RNA-seq, for the first time, we generated 226,054 and 224,376 transcripts from E+ and E- tall fescue, respectively through de novo assembly. The upregulated transcripts were detected fewer than the downregulated ones in both tissues (S: 803 up and 878 down; L: 783 up and 846 down) under the freezing temperatures (-3.0-0.5°C) in the morning. Gene Ontology enrichment analysis identified 3 out of top 10 significant GO terms only in the morning samples. Metabolic pathway and biosynthesis of secondary metabolite genes showed lowest number of DEGs under morning freezing stress and highest number in evening cold condition. The 1,085 DEGs were only expressed under morning stress condition and, more importantly, the eight candidate orthologous genes of rice identified under morning freezing temperatures, including orthologs of rice phytochrome A, phytochrome C, and ethylene receptor genes, might be the possible route underlying cold tolerance in tall fescue.

5.
Commun Biol ; 5(1): 227, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277578

RESUMO

The perennial native switchgrass adapts better than other plant species do to marginal soils with low plant-available nutrients, including those with low phosphorus (P) content. Switchgrass roots and their associated microorganisms can alter the pools of available P throughout the whole soil profile making predictions of P availability in situ challenging. Plant P homeostasis makes monitoring of P limitation via measurements of plant P content alone difficult to interpret. To address these challenges, we developed a machine-learning model trained with high accuracy using the leaf tissue chemical profile, rather than P content. By applying this learned model in field trials across two sites with contrasting extractable soil P, we observed that actual plant available P in soil was more similar than expected, suggesting that adaptations occurred to alleviate the apparent P constraint. These adaptations come at a metabolic cost to the plant that have consequences for feedstock chemical components and quality. We observed that other biochemical signatures of P limitation, such as decreased cellulose-to-lignin ratios, were apparent, indicating re-allocation of carbon resources may have contributed to increased P acquisition. Plant P allocation strategies also differed across sites, and these differences were correlated with the subsequent year's biomass yields.


Assuntos
Panicum , Fósforo , Nitrogênio/metabolismo , Nutrientes , Panicum/metabolismo , Fósforo/análise , Solo/química
6.
BMC Plant Biol ; 22(1): 107, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260072

RESUMO

BACKGROUND: Sustainable production of high-quality feedstock has been of great interest in bioenergy research. Despite the economic importance, high temperatures and water deficit are limiting factors for the successful cultivation of switchgrass in semi-arid areas. There are limited reports on the molecular basis of combined abiotic stress tolerance in switchgrass, particularly the combination of drought and heat stress. We used transcriptomic approaches to elucidate the changes in the response of switchgrass to drought and high temperature simultaneously. RESULTS: We conducted solely drought treatment in switchgrass plant Alamo AP13 by withholding water after 45 days of growing. For the combination of drought and heat effect, heat treatment (35 °C/25 °C day/night) was imposed after 72 h of the initiation of drought. Samples were collected at 0 h, 72 h, 96 h, 120 h, 144 h, and 168 h after treatment imposition, total RNA was extracted, and RNA-Seq conducted. Out of a total of 32,190 genes, we identified 3912, as drought (DT) responsive genes, 2339 and 4635 as, heat (HT) and drought and heat (DTHT) responsive genes, respectively. There were 209, 106, and 220 transcription factors (TFs) differentially expressed under DT, HT and DTHT respectively. Gene ontology annotation identified the metabolic process as the significant term enriched in DTHT genes. Other biological processes identified in DTHT responsive genes included: response to water, photosynthesis, oxidation-reduction processes, and response to stress. KEGG pathway enrichment analysis on DT and DTHT responsive genes revealed that TFs and genes controlling phenylpropanoid pathways were important for individual as well as combined stress response. For example, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) from the phenylpropanoid pathway was induced by single DT and combinations of DTHT stress. CONCLUSION: Through RNA-Seq analysis, we have identified unique and overlapping genes in response to DT and combined DTHT stress in switchgrass. The combination of DT and HT stress may affect the photosynthetic machinery and phenylpropanoid pathway of switchgrass which negatively impacts lignin synthesis and biomass production of switchgrass. The biological function of genes identified particularly in response to DTHT stress could further be confirmed by techniques such as single point mutation or RNAi.


Assuntos
Adaptação Fisiológica/genética , Desidratação/genética , Resposta ao Choque Térmico/genética , Panicum/genética , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas
7.
Plants (Basel) ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214899

RESUMO

Switchgrass (Panicum virgatum L.) is a warm-season perennial grass species that is utilized as forage for livestock and biofuel feedstock. The stability of biomass yield and regrowth vigor under changing harvest frequency would help manage potential fluctuations in the feedstock market and would provide a continuous supply of quality forage for livestock. This study was conducted to (i) assess the genetic variation and (ii) identify the quantitative trait loci (QTL) associated with regrowth vigor after multiple cuttings in lowland switchgrass. A nested association mapping (NAM) population comprising 2000 pseudo F2 progenies was genotyped with single nucleotide polymorphism (SNP) markers derived from exome-capture sequencing and was evaluated for regrowth vigor in 2017 and 2018. The results showed significant variation among the NAM families in terms of regrowth vigor (p < 0.05). A total of 10 QTL were detected on 6 chromosomes: 1B, 5A, 5B, 6B, 7B, and 8A, explaining the phenotypic variation by up to 4.7%. The additive genetic effects of an individual QTL ranged from -0.13 to 0.26. No single QTL showed a markedly large effect, suggesting complex genetics underlying regrowth vigor in switchgrass. The homologs of candidate genes that play a variety of roles in developmental processes, including plant hormonal signal transduction, nucleotide biosynthesis, secondary metabolism, senescence, and responses to both biotic and abiotic stresses, were identified in the vicinity of QTL.

8.
Front Plant Sci ; 12: 729797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745162

RESUMO

Tall fescue (Festuca arundinacea Schreb.) is one of the most important cool-season perennial obligatory outcrossing forage grasses in the United States. The production and persistence of tall fescue is significantly affected by drought in the south-central United States. Shoot-specific endophyte (Epichloë coenophiala)-infected tall fescue showed superior performance under both biotic and abiotic stress conditions. We performed a genome-wide association analysis using clonal pairs of novel endophyte AR584-positive (EP) and endophyte-free (EF) tall fescue populations consisting of 205 genotypes to identify marker-trait associations (MTAs) that contribute to drought tolerance. The experiment was performed through November 2014 to June 2018 in the field, and phenotypic data were taken on plant height, plant spread, plant vigor, and dry biomass weight under natural summer conditions of sporadic drought. Genotyping-by-sequencing of the population generated 3,597 high quality single nucleotide polymorphisms (SNPs) for further analysis. We identified 26 putative drought responsive MTAs (17 specific to EP, eight specific to EF, and one in both EP and EF populations) and nine of them (i.e., V.ep_10, S.ef_12, V.ep_27, HSV.ef_31, S.ep_30, SV.ef_32, V.ep_68, V.ef_56, and H.ef_57) were identified within 0.5 Mb region in the tall fescue genome (44.5-44.7, 75.3-75.8, 77.5-77.9 and 143.7-144.2 Mb). Using 26 MTAs, 11 tall fescue genotypes were selected for subsequent study to develop EP and EF drought tolerant tall fescue populations. Ten orthologous genes (six for EP and four for EF population) were identified in Brachypodium genome as potential candidates for drought tolerance in tall fescue, which were also earlier reported for their involvement in abiotic stress tolerance. The MTAs and candidate genes identified in this study will be useful for marker-assisted selection in improving drought tolerance of tall fescue as well opening avenue for further drought study in tall fescue.

9.
Front Plant Sci ; 12: 685187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220905

RESUMO

Virus-induced gene silencing (VIGS) is a rapid and powerful method to evaluate gene function, especially for species like hexaploid wheat that have large, redundant genomes and are difficult and time-consuming to transform. The Brome mosaic virus (BMV)-based VIGS vector is widely used in monocotyledonous species but not wheat. Here we report the establishment of a simple and effective VIGS procedure in bread wheat using BMVCP5, the most recently improved BMV silencing vector, and wheat genes PHYTOENE DESATURASE (TaPDS) and PHOSPHATE2 (TaPHO2) as targets. Time-course experiments revealed that smaller inserts (~100 nucleotides, nt) were more stable in BMVCP5 and conferred higher silencing efficiency and longer silencing duration, compared with larger inserts. When using a 100-nt insert and a novel coleoptile inoculation method, BMVCP5 induced extensive silencing of TaPDS transcript and a visible bleaching phenotype in the 2nd to 5th systemically-infected leaves from nine to at least 28 days post inoculation (dpi). For TaPHO2, the ability of BMVCP5 to simultaneously silence all three homoeologs was demonstrated. To investigate the feasibility of BMV VIGS in wheat roots, ectopically expressed enhanced GREEN FLUORESCENT PROTEIN (eGFP) in a transgenic wheat line was targeted for silencing. Silencing of eGFP fluorescence was observed in both the maturation and elongation zones of roots. BMVCP5 mediated significant silencing of eGFP and TaPHO2 mRNA expression in roots at 14 and 21 dpi, and TaPHO2 silencing led to the doubling of inorganic phosphate concentration in the 2nd through 4th systemic leaves. All 54 wheat cultivars screened were susceptible to BMV infection. BMVCP5-mediated TaPDS silencing resulted in the expected bleaching phenotype in all eight cultivars examined, and decreased TaPDS transcript was detected in all three cultivars examined. This BMVCP5 VIGS technology may serve as a rapid and effective functional genomics tool for high-throughput gene function studies in aerial and root tissues and in many wheat cultivars.

10.
Microbiome ; 9(1): 96, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910643

RESUMO

BACKGROUND: Despite their widespread distribution and ecological importance, protists remain one of the least understood components of the soil and rhizosphere microbiome. Knowledge of the roles that protists play in stimulating organic matter decomposition and shaping microbiome dynamics continues to grow, but there remains a need to understand the extent to which biological and environmental factors mediate protist community assembly and dynamics. We hypothesize that protists communities are filtered by the influence of plants on their rhizosphere biological and physicochemical environment, resulting in patterns of protist diversity and composition that mirror previously observed diversity and successional dynamics in rhizosphere bacterial communities. RESULTS: We analyzed protist communities associated with the rhizosphere and bulk soil of switchgrass (SG) plants (Panicum virgatum) at different phenological stages, grown in two marginal soils as part of a large-scale field experiment. Our results reveal that the diversity of protists is lower in rhizosphere than bulk soils, and that temporal variations depend on soil properties but are less pronounced in rhizosphere soil. Patterns of significantly prevalent protists groups in the rhizosphere suggest that most protists play varied ecological roles across plant growth stages and that some plant pathogenic protists and protists with omnivorous diets reoccur over time in the rhizosphere. We found that protist co-occurrence network dynamics are more complex in the rhizosphere compared to bulk soil. A phylogenetic bin-based null model analysis showed that protists' community assembly in our study sites is mainly controlled by homogenous selection and dispersal limitation, with stronger selection in rhizosphere than bulk soil as SG grew and senesced. CONCLUSIONS: We demonstrate that environmental filtering is a dominant determinant of overall protist community properties and that at the rhizosphere level, plant control on the physical and biological environment is a critical driver of protist community composition and dynamics. Since protists are key contributors to plant nutrient availability and bacterial community composition and abundance, mapping and understanding their patterns in rhizosphere soil is foundational to understanding the ecology of the root-microbe-soil system. Video Abstract.


Assuntos
Panicum , Rizosfera , Eucariotos/genética , Filogenia , Raízes de Plantas , Microbiologia do Solo
11.
BMC Plant Biol ; 21(1): 128, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663376

RESUMO

BACKGROUND: Switchgrass (Panicum virgatum L.) is an important bioenergy and forage crop. The outcrossing nature of switchgrass makes it infeasible to maintain a genotype through sexual propagation. Current asexual propagation protocols in switchgrass have various limitations. An easy and highly-efficient vegetative propagation method is needed to propagate large natural collections of switchgrass genotypes for genome-wide association studies (GWAS). RESULTS: Micropropagation by node culture was found to be a rapid method for vegetative propagation of switchgrass. Bacterial and fungal contamination during node culture is a major cause for cultural failure. Adding the biocide, Plant Preservative Mixture (PPM, 0.2%), and the fungicide, Benomyl (5 mg/l), in the incubation solution after surface sterilization and in the culture medium significantly decreased bacterial and fungal contamination. In addition, "shoot trimming" before subculture had a positive effect on shoot multiplication for most genotypes tested. Using the optimized node culture procedure, we successfully propagated 330 genotypes from a switchgrass GWAS panel in three separate experiments. Large variations in shoot induction efficiency and shoot growth were observed among genotypes. Separately, we developed an in planta node culture method by stimulating the growth of aerial axillary buds into shoots directly on the parent plants, through which rooted plants can be generated within 6 weeks. By circumventing the tissue culture step and avoiding application of exterior hormones, the in planta node culture method is labor- and cost-efficient, easy to master, and has a high success rate. Plants generated by the in planta node culture method are similar to seedlings and can be used directly for various experiments. CONCLUSIONS: In this study, we optimized a switchgrass node culture protocol by minimizing bacterial and fungal contamination and increasing shoot multiplication. With this improved protocol, we successfully propagated three quarters of the genotypes in a diverse switchgrass GWAS panel. Furthermore, we established a novel and high-throughput in planta node culture method. Together, these methods provide better options for researchers to accelerate vegetative propagation of switchgrass.


Assuntos
Panicum/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Meios de Cultura , Panicum/efeitos dos fármacos , Panicum/genética , Panicum/microbiologia , Melhoramento Vegetal , Reprodução Assexuada
12.
Plant Environ Interact ; 2(6): 277-289, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37284176

RESUMO

Tall fescue (Festuca arundinacea) is an important cool-season perennial forage grass that forms mutualistic symbioses with fungal endophytes. Physiological, biochemical and transcriptional comparisons were made between two tall fescue genotypes with contrasting drought tolerance (tolerant, T400, and sensitive, S279), either with or without endophyte (Epichloë coenophiala). Drought stress was applied by withholding watering until plants reached mild, moderate and severe stresses. Physiological characterization showed that T400 had narrower, thicker leaves, and lower leaf conductance under well-watered conditions, compared to S279. After severe drought and recovery, endophytic T400 had greater shoot and root biomass than other plant types. Under drought, leaf osmotic pressure increased much more in T400 than S279, consistent with accumulation of metabolites/osmolytes, especially proline. Gene Ontology enrichment analysis indicated that T400 had more active organic acid metabolism than S279 under drought, and implicated the role of endophyte in stimulating protein metabolism in both genotypes. Overall T400 and S279 responded to endophyte differently in aspects of physiology, gene transcription and metabolites, indicating plant genotype-specific reactions to endophyte infection.

13.
Environ Microbiol ; 23(4): 1876-1888, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32959463

RESUMO

Serendipita vermifera ssp. bescii, hereafter referred to as S. bescii, is a root-associated fungus that promotes plant growth in both its native switchgrass host and a variety of monocots and dicots. Winter wheat (Triticum aestivum L.), a dual-purpose crop, used for both forage and grain production, significantly contributes to the agricultural economies of the Southern Great Plains, USA. In this study, we investigated the influence of S. bescii on growth and transcriptome regulation of nitrogen (N) and phosphorus (P) metabolism in winter wheat. Serendipita bescii significantly improved lateral root growth and forage biomass under a limited N or P regime. Further, S. bescii activated sets of host genes regulating N and P starvation responses. These genes include, root-specific auxin transport, strigolactone and gibberellin biosynthesis, degradation of phospholipids and biosynthesis of glycerolipid, downregulation of ammonium transport and nitrate assimilation, restriction of protein degradation by autophagy and subsequent N remobilization. All these genes are hypothesized to regulate acquisition, assimilation and remobilization of N and P. Based on transcriptional level gene regulation and physiological responses to N or P limitation, we suggest S. bescii plays a critical role in modulating stress imposed by limitation of these two critical nutrients in winter wheat.


Assuntos
Nitrogênio , Triticum , Basidiomycota , Fósforo , Transcriptoma/genética , Triticum/genética
14.
Glob Change Biol Bioenergy ; 13(1): 98-111, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33381230

RESUMO

Flowering in perennial species is directed via complex signalling pathways that adjust to developmental regulations and environmental cues. Synchronized flowering in certain environments is a prerequisite to commercial seed production, and so the elucidation of the genetic architecture of flowering time in Miscanthus and switchgrass could aid breeding in these underdeveloped species. In this context, we assessed a mapping population in Miscanthus and two ecologically diverse switchgrass mapping populations over 3 years from planting. Multiple flowering time quantitative trait loci (QTL) were identified in both species. Remarkably, the most significant Miscanthus and switchgrass QTL proved to be syntenic, located on linkage groups 4 and 2, with logarithm of odds scores of 17.05 and 21.8 respectively. These QTL regions contained three flowering time transcription factors: Squamosa Promoter-binding protein-Like, MADS-box SEPELLATA2 and gibberellin-responsive bHLH137. The former is emerging as a key component of the age-related flowering time pathway.

15.
Plants (Basel) ; 9(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317031

RESUMO

Wheat is a major cool-season forage crop in the southern United States. The objective of this study is to understand the effect of nitrogen (N) fertilization on wheat biomass yield, quality, nitrogen use efficiency (NUE), and nitrogen nutrition index (NNI). The experiments were conducted in a greenhouse and a hoop house in a split-plot design, with three replications. Twenty wheat cultivars/lines were evaluated at four N rates (0, 75, 150, and 300 mg N.kg-1 soil) in the greenhouse and (0, 50, 100, and 200 mg N.kg-1 soil) in the hoop house. In general, high-NUE lines had lower crude protein content than the low-NUE lines. None of the cultivars/lines reached a plateau for biomass production or crude protein at the highest N rate. The line × N rate interaction for NUE was not significant in the greenhouse (p = 0.854) but was highly significant in the hoop house (p < 0.001). NNI had a negative correlation with NUE and biomass. NUE had strong positive correlations with shoot biomass and total biomass but low to moderate correlations with root biomass. NUE also had a strong positive correlation with N uptake efficiency. Lines with high NUE can be used in breeding programs to enhance NUE in wheat for forage use.

16.
Sci Rep ; 10(1): 14539, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884044

RESUMO

Summer dormancy is an important stress avoidance mechanism of cool season perennial grasses to persist well under harsh summer conditions. QTL associated with summer-dormancy related traits in tall fescue has significant breeding implications. An F1 pseudo testcross population was developed by crossing a Mediterranean (103-2) to a Continental parent (R43-64). The population was genotyped using 2,000 SSR and DArT markers. Phenotyping was done in growth chambers and in two Oklahoma, USA locations. Total length of R43-64 and 103-2 maps were 1,956 cM and 1,535 cM, respectively. Seventy-seven QTL were identified in the male and 46 in the female parent maps. The phenotypic variability explained by the QTL ranged between 9.91 and 32.67%. Among all the QTL, five summer dormancy related putative QTL were identified in R43-64 linkage groups (LGs) 4, 5, 12, 20 and 22 and two in 103-2 LGs 5 and 17. All the putative summer dormant QTL regions in male map showed pleiotropic responses and epistatic interactions with other summer dormant and stress responsive QTL regions for plant height, new leaf and dry biomass weight. The flanking markers related to the QTL reported in this study will be useful to improve tall fescue persistence in dry areas through marker-assisted breeding.


Assuntos
Festuca/genética , Locos de Características Quantitativas/genética , Genótipo , Fenótipo , Análise de Sequência de DNA/métodos
17.
Plants (Basel) ; 8(12)2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31847311

RESUMO

Isolation of good quality chloroplast DNA (cpDNA) is a challenge in different plant species, although several methods for isolation are known. Attempts were undertaken to isolate cpDNA from Festuca grass species by using available standard protocols; however, they failed due to difficulties separating intact chloroplasts from the polysaccharides, oleoresin, and contaminated nuclear DNA that are present in the crude homogenate. In this study, we present a quick and inexpensive protocol for isolating intact chloroplasts from seven grass varieties/accessions of five Festuca species using a single layer of 30% Percoll solution. This protocol was successful in isolating high quality cpDNA with the least amount of contamination of other DNA. We performed Illumina MiSeq paired-end sequencing (2 × 300 bp) using 200 ng of cpDNA of each variety/accession. Chloroplast genome mapping showed that 0.28%-11.37% were chloroplast reads, which covered 94%-96% of the reference plastid genomes of the closely related grass species. This improved method delivered high quality cpDNA from seven grass varieties/accessions of five Festuca species and could be useful for other grass species with similar genome complexity.

18.
BMC Genomics ; 20(1): 667, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438854

RESUMO

BACKGROUND: Histone modifications play a significant role in the regulation of transcription and various biological processes, such as development and regeneration. Though a few genomic (including DNA methylation patterns) and transcriptomic studies are currently available in switchgrass, the genome-wide distribution of histone modifications has not yet been studied to help elucidate gene regulation and its application to switchgrass improvement. RESULTS: This study provides a comprehensive epigenomic analyses of two contrasting switchgrass ecotypes, lowland (AP13) and upland (VS16), by employing chromatin immunoprecipitation sequencing (ChIP-Seq) with two histone marks (suppressive- H3K9me2 and active- H4K12ac). In this study, most of the histone binding was in non-genic regions, and the highest enrichment was seen between 0 and 2 kb regions from the transcriptional start site (TSS). Considering the economic importance and potential of switchgrass as a bioenergy crop, we focused on genes, transcription factors (TFs), and pathways that were associated with C4-photosynthesis, biomass, biofuel production, biotic stresses, and abiotic stresses. Using quantitative real-time PCR (qPCR) the relative expression of five genes selected from the phenylpropanoid-monolignol pathway showed preferential binding of acetylation marks in AP13 rather than in VS16. CONCLUSIONS: The genome-wide histone modifications reported here can be utilized in understanding the regulation of genes important in the phenylpropanoid-monolignol biosynthesis pathway, which in turn, may help understand the recalcitrance associated with conversion of biomass to biofuel, a major roadblock in utilizing lignocellulosic feedstocks.


Assuntos
Genômica , Histonas/metabolismo , Panicum/genética , Acetilação , Respiração Celular , Epigenômica , Genoma de Planta/genética , Histonas/química , Lisina/metabolismo , Metilação , Panicum/citologia , Panicum/metabolismo , Fotossíntese/genética , Fatores de Transcrição/metabolismo
19.
Plant Direct ; 3(1): e00111, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31245753

RESUMO

Switchgrass (Panicum virgatum L.) is a native perennial grass species with great potential for bioenergy and forage. However, knowledge about its genetics and biology related to breeding is still in its infancy. Studying the diversity of switchgrass germplasm will shed light on variability, response to environmental conditions, adaptability, breeding, etc. Thirty-six switchgrass accessions/cultivars were used to study the ecotypic and genotypic effects on regrowth, heading date, and vegetative growth period. The R-360 honeycomb design was used for planting these accessions in 2007. Data on regrowth and heading dates were recorded in 2008, 2010, and 2011. Vegetative growth period was calculated by subtracting the regrowth date from the heading date. It was found that the lowland started regrowing earlier (77 ± 0.4 days of the year, DOY) than the upland ecotype (82 ± 0.3 DOY). The upland had earlier heading date (160 ± 0.4 DOY) than the lowland ecotype (173 ± 0.5 DOY). Vegetative growth period was about 18 days longer in the lowland (89 ± 0.6 days) than the upland ecotype (71 ± 0.4 days). For switchgrass (i.e., all accessions), biomass yield was related positively to growth period and heading date; however, biomass was only weakly related to regrowth. Therefore, when targeting biomass in the breeding program, growth period may be a quick and reliable reference in both ecotypes to quickly estimate biomass potential while regrowth and heading date may be better used as a parameter for accessions within an ecotype.

20.
Plant Genome ; 11(3)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30512032

RESUMO

Switchgrass ( L.) is a promising herbaceous energy crop, but further gains in biomass yield and quality must be achieved to enable a viable bioenergy industry. Developing DNA markers can contribute to such progress, but depiction of genetic bases should be reliable, involving simple additive marker effects and also interactions with genetic backgrounds (e.g., ecotypes) or synergies with other markers. We analyzed plant height, C content, N content, and mineral concentration in a diverse panel consisting of 512 genotypes of upland and lowland ecotypes. We performed association analyses based on exome capture sequencing and tested 439,170 markers for marginal effects, 83,290 markers for marker × ecotype interactions, and up to 311,445 marker pairs for pairwise interactions. Analyses of pairwise interactions focused on subsets of marker pairs preselected on the basis of marginal marker effects, gene ontology annotation, and pairwise marker associations. Our tests identified 12 significant effects. Homology and gene expression information corroborated seven effects and indicated plausible causal pathways: flowering time and lignin synthesis for plant height; plant growth and senescence for C content and mineral concentration. Four pairwise interactions were detected, including three interactions preselected on the basis of pairwise marker correlations. Furthermore, a marker × ecotype interaction and a pairwise interaction were confirmed in an independent switchgrass panel. Our analyses identified reliable candidate variants for important bioenergy traits. Moreover, they exemplified the importance of interactive effects for depicting genetic bases and illustrated the usefulness of preselecting marker pairs for identifying pairwise marker interactions in association studies.


Assuntos
Genes de Plantas , Variação Genética , Panicum/genética , Biocombustíveis , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Panicum/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA