Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(9): 10727-10737, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463303

RESUMO

In this study, a straightforward, eco-friendly, and facile method for synthesizing iron oxide nanoparticles (IONPs) utilizing Piper chaba steam extract as a reducing and stabilizing agent has been demonstrated. The formation of stable IONPs coated with organic moieties was confirmed from UV-vis, FTIR, and EDX spectroscopy and DLS analysis. The produced IONPs are sufficiently crystalline to be superparamagnetic having a saturation magnetization value of 58 emu/g, and their spherical form and size of 9 nm were verified by XRD, VSM, SEM, and TEM investigations. In addition, the synthesized IONPs exhibited notable effectiveness in the removal of Congo Red (CR) dye with a maximum adsorption capacity of 88 mg/g. The adsorption kinetics followed pseudo-second-order kinetics, meaning the adsorption of CR on IONPs is mostly controlled by chemisorption. The adsorption isotherms of CR on the surface of IONPs follow the Langmuir isotherm model, indicating the monolayer adsorption on the homogeneous surface of IONPs through adsorbate-adsorbent interaction. The IONPs have revealed good potential for their reusability, with the adsorption efficiency remaining at about 85% after five adsorption-desorption cycles. The large-scale, safe, and cost-effective manufacturing of IONPs is made possible by this environmentally friendly process.

2.
Glob Chall ; 8(1): 2300247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223893

RESUMO

To discharge the colored effluents from industries there needs to be effective and affordable treatment options. Adsorption using reduced graphene oxide (rGO) as an adsorbent is a prominent one. In this study, green coffee bean extract (GCBE) is utilized as a safe reducing agent for the reduction of graphene oxide (GO) to synthesize rGO. The formation of rGO is confirmed by a new peak in the UV-vis spectra at 275 nm and a diffraction peak in the XRD patterns at 22°. The effective formation of rGO is further substantiated by a change in the GO peak's properties in the FTIR, EDX, and Raman spectra and a weight loss change in TGA. The SEM and TEM analyses demonstrate the effective production of the nano-sheets of rGO having exfoliated and segregated in a few layers. Furthermore, the obtained rGO exhibited outstanding efficacy in wastewater cleanup, effectively adsorbing MB as a prototype organic dye. The kinetics and isotherm study suggested that the adsorption leads by the chemisorption and monolayer formation on the homogeneous surface of rGO. The maximum adsorption capacity is found to be 89.3 mg g-1. This process offers a fresh opportunity for the economical and safe production of rGO for wastewater treatment.

3.
Glob Chall ; 7(8): 2300072, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37635703

RESUMO

Silver nanoparticles (AgNPs) prepared by green synthesis have a lot of potentials in various fields. Among them, as an antioxidant, antibacterial agent, and nanoprobe for the colorimetric detection of mercury (Hg2+) ions is thought to be the most important. The antibacterial, antioxidant, and colorimetric sensing potential of the greenly produced AgNPs utilizing Piper chaba stem extract are all predicted in this investigation. By using the disc diffusion method, the antibacterial activity of greenly produced AgNPs are assessed, and the findings are measured from the zone of inhibition (ZOI). It is revealed that the Staphylococcus aureus, Micrococcus spp., Escherichia coli, and Pseudomonas aeruginosa bacterial strains are significantly resisted by the greenly produced AgNPs. The antioxidant activity test of AgNPs reveals a considerable impact on free radical scavenging having the inhibitory concentration (IC 50) is 1.13 mL (equivalent to 0.45 mg mL-1). Also, with a low limit of detection of 28 ppm, the resulting AgNPs are used as highly selective and economical colorimetric sensors for Hg2+ detection. The study's findings support the hypothesis that Piper chaba stems can serve as a source for the production of AgNPs with high antibacterial and antioxidant activity and usefulness for simple colorimetric readings of Hg2+.

4.
ACS Omega ; 6(28): 18260-18268, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308057

RESUMO

Biogenically synthesized silver nanoparticles (AgNP) increase the fascination over chemical ones due to their facile and green synthetic process. This study reports the development of an eco-friendly and cost-effective synthesis of AgNPs using an aqueous extract of Citrus macroptera fruit peel, an agricultural waste, as a sole agent with both reducing and capping abilities. The formation of AgNPs was verified by the surface plasmon resonance peak at 426 nm in the UV-vis spectrum, X-ray diffraction pattern, and transmission electron micrography images. The AgNPs obtained under the optimized conditions consist of face-centered cubic crystals and spherical morphology with an average size of 11 nm. The AgNPs are coated with phytochemicals in the C. macroptera fruit peel extract and are stably dispersible due to their negatively charged nature. The AgNPs effectively catalyzed the reduction of 4-nitrophenol to 4-aminophenol and the degradation of methyl orange and methylene blue in the presence of sodium borohydride. This method employing a fruit peel extract is facile, efficient, eco-friendly, and cost-effective and has potential for industrial green fabrication of AgNPs.

5.
Nanomaterials (Basel) ; 10(9)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911754

RESUMO

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA