Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1225677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492225

RESUMO

Epithelial tissues are crucial to maintaining healthy organization and compartmentalization in various organs and act as a first line of defense against infection in barrier organs such as the skin, lungs and intestine. Disruption or injury to these barriers can lead to infiltration of resident or foreign microbes, initiating local inflammation. One often overlooked aspect of this response is local changes in tissue mechanics during inflammation. In this mini-review, we summarize known molecular mechanisms linking disruption of epithelial barrier function to mechanical changes in epithelial tissues. We consider direct mechanisms, such as changes in the secretion of extracellular matrix (ECM)-modulating enzymes by immune cells as well as indirect mechanisms including local activation of fibroblasts. We discuss how these mechanical changes can modulate local immune cell activity and inflammation and perturb epithelial homeostasis, further dysregulating epithelial barrier function. We propose that this two-way relationship between loss of barrier function and altered tissue mechanics can lead to a positive feedback loop that further perpetuates inflammation. We discuss this cycle in the context of several chronic inflammatory diseases, including inflammatory bowel disease (IBD), liver disease and cancer, and we present the modulation of tissue mechanics as a new framework for combating chronic inflammation.

2.
Matrix Biol ; 98: 32-48, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34015468

RESUMO

The sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that is now appreciated as key regulatory factor for various cellular functions in the kidney, including matrix remodeling. It is generated by two sphingosine kinases (Sphk), Sphk1 and Sphk2, which are ubiquitously expressed, but have distinct enzymatic activities and subcellular localizations. In this study, we have investigated the role of Sphk2 in podocyte function and its contribution to diabetic nephropathy. We show that streptozotocin (STZ)-induced nephropathy and albuminuria in mice is prevented by genetic depletion of Sphk2. This protection correlated with an increased protein expression of the transcription factor Wilm's tumor suppressor gene 1 (WT1) and its target gene nephrin, and a reduced macrophage infiltration in immunohistochemical renal sections of STZ-treated Sphk2-/- mice compared to STZ-treated wildtype mice. To investigate changes on the cellular level, we used an immortalized human podocyte cell line and generated a stable knockdown of Sphk2 (Sphk2-kd) by a lentiviral transduction method. These Sphk2-kd cells accumulated sphingosine as a consequence of the knockdown, and showed enhanced nephrin and WT1 mRNA and protein expressions similar to the finding in Sphk2 knockout mice. Treatment of wildtype podocytes with the highly selective Sphk2 inhibitor SLM6031434 caused a similar upregulation of nephrin and WT1 expression. Furthermore, exposing cells to the profibrotic mediator transforming growth factor ß (TGFß) resulted on the one side in reduced nephrin and WT1 expression, but on the other side, in upregulation of various profibrotic marker proteins, including connective tissue growth factor (CTGF), fibronectin (FN) and plasminogen activator inhibitor (PAI) 1. All these effects were reverted by Sphk2-kd and SLM6031434. Mechanistically, the protection by Sphk2-kd may depend on accumulated sphingosine and inhibited PKC activity, since treatment of cells with exogenous sphingosine not only reduced the phosphorylation pattern of PKC substrates, but also increased WT1 protein expression. Moreover, the selective stable knockdown of PKCδ increased WT1 expression, suggesting the involvement of this PKC isoenzyme in WT1 regulation. The glucocorticoid dexamethasone, which is a treatment option in many glomerular diseases and is known to mediate a nephroprotection, not only downregulated Sphk2 and enhanced cellular sphingosine, but also enhanced WT1 and nephrin expressions, thus, suggesting that parts of the nephroprotective effect of dexamethasone is mediated by Sphk2 downregulation. Altogether, our data demonstrated that loss of Sphk2 is protective in diabetes-induced podocytopathy and can prevent proteinuria, which is a hallmark of many glomerular diseases. Thus, Sphk2 could serve as a new attractive pharmacological target to treat proteinuric kidney diseases.


Assuntos
Nefropatias Diabéticas , Fosfotransferases (Aceptor do Grupo Álcool) , Podócitos , Proteínas WT1 , Albuminúria/genética , Animais , Nefropatias Diabéticas/genética , Genes Supressores de Tumor , Proteínas de Membrana , Camundongos , Camundongos Knockout , Estreptozocina
3.
Life Sci ; 264: 118722, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160989

RESUMO

AIMS: Secretory clusterin (sCLU) plays an important role in tumor development and cancer progression. However, the molecular mechanisms and physiological functions of sCLU in oral cancer is unclear. We examined the impact of sCLU-mediated autophagy in cell survival and apoptosis inhibition in oral cancer. MAIN METHODS: Immunohistochemical analysis was performed to analyze protein expression in patient samples. Autophagy and mitophagy was studied by immunofluorescence microscopy and Western blot. The gain and loss of function was studied by overexpression of plasmid and siRNA approaches respectively. Cellular protection against nutrient starvation and therapeutic stress by sCLU was studied by cell viability, caspase assay and meta-analysis. KEY FINDINGS: The data from oral cancer patients showed that the expression levels of sCLU, ATG14, ULK1, and PARKIN increased in grade-wise manners. Interestingly, sCLU overexpression promoted autophagy through AMPK/Akt/mTOR signaling pathway leading to cell survival and protection from long exposure serum starvation induced-apoptosis. Additionally, sCLU was demonstrated to interact with ULK1 and inhibition of ULK1 activity by SBI206965 was found to abolish sCLU-induced autophagy indicating critical role of ULK1 in induction of autophagy. Furthermore, sCLU was observed to promote expression of mitophagy-associated proteins in serum starvation conditions to protect cells from nutrient deprivation. The meta-analysis elucidated that high CLU expression is associated with therapy resistance in cancer and we demonstrated that sCLU-mediated mitophagy was revealed to inhibit cell death by cisplatin. SIGNIFICANCE: The present investigation has highlighted the probable implications of the clusterin-induced autophagy in cell survival and inhibition of apoptosis in oral cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Clusterina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Bucais/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Mitofagia/genética , Neoplasias Bucais/genética , Neoplasias de Células Escamosas/genética , Neoplasias de Células Escamosas/patologia
4.
Food Chem Toxicol ; 141: 111367, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32335210

RESUMO

Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is a potent neurotoxic agent that is responsible for impaired neuronal development and is associated with aging. Here, it was demonstrated that extracts of Bacopa monnieri (BM), a traditional Ayurvedic medicine, diminished the B[a]P-induced apoptosis and senescence in human astrocytes. BM was demonstrated to protect the immortalized primary fetal astrocytes (IMPHFA) from B[a]P-induced apoptosis and senescence by reducing the damaged mitochondria that produced reactive oxygen species (ROS). Furthermore, it was shown that B[a]P-triggered G2 arrest could be altered by BM, thus indicating that BM could reverse the cell cycle arrest and mediate a normal cell cycle in IMPHFA cells. In addition, the lifespan of Caenorhabditis elegans was assessed, which confirmed these effects in the presence of BM, compared to the B[a]P-treated group. Furthermore, the anti-senescence and anti-apoptotic activities of BM were observed to be mediated through the protective effect of mitophagy, and inhibition of mitophagy could not protect the astrocytes from mitochondrial ROS-induced apoptosis and senescence in BM-treated cells. Moreover, it was revealed that BM induced Parkin-dependent mitophagy to exert its cytoprotective activity in IMPHFA cells. In conclusion, the anti-senescence and anti-apoptotic effects of BM in astrocytes could combat pollution and aging-related neurological disorders.


Assuntos
Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Bacopa/química , Benzo(a)pireno/toxicidade , Senescência Celular/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Pharmacol Res ; 144: 8-18, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30951812

RESUMO

Plant lectins are non-immunoglobin in nature and bind to the carbohydrate moiety of the glycoconjugates without altering any of the recognized glycosyl ligands. Plant lectins have found applications as cancer biomarkers for recognizing the malignant tumor cells for the diagnosis and prognosis of cancer. Interestingly, plant lectins contribute to inducing cell death through autophagy and apoptosis, indicating their potential implication in cancer inhibitory mechanism. In the present review, anticancer activities of major plant lectins have been documented, with a detailed focus on the signaling circuit for the possible molecular targeted cancer therapy. In this context, several lectins have exhibited preclinical and clinical significance, driving toward therapeutic potential in cancer treatment. Moreover, several plant lectins induce immunomodulatory activities, and therefore, novel strategies have been established from preclinical and clinical investigations for the development of combinatorial treatment consisting of immunotherapy along with other anticancer therapies. Although the application of plant lectins in cancer is still in very preliminary stage, advanced high-throughput technology could pave the way for the development of lectin-based complimentary medicine for cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Lectinas de Plantas/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Neoplasias/imunologia , Neoplasias/patologia , Lectinas de Plantas/farmacologia
6.
Adv Exp Med Biol ; 1123: 179-194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016601

RESUMO

Mitochondria are customarily acknowledged as the powerhouse of the cell by virtue of their indispensable role in cellular energy production. In addition, it plays an important role in pluripotency, differentiation, and reprogramming. This review describes variation in the stem cells and their mitochondrial heterogeneity. The mitochondrial variation can be described in terms of structure, function, and subcellular distribution. The mitochondria cristae development status and their localization patterns determine the oxygen consumption rate and ATP production which is a central controller of stem cell maintenance and differentiation. Generally, stem cells show spherical, immature mitochondria with perinuclear distribution. Such mitochondria are metabolically less energetic and low polarized. Moreover, mostly glycolytic energy production is found in pluripotent stem cells with a variation in naïve stem cells which perform oxidative phosphorylation (OXPHOS). This article also describes the structural and functional journey of mitochondria during development. Future insight into underlying mechanisms associated with such alternation in mitochondria of stem cells during embryonic stages could uncover mitochondrial adaptability on cellular demands. Moreover, investigating the importance of mitochondria in pluripotency maintenance might unravel the cause of mitochondrial diseases, aging, and regenerative therapies.


Assuntos
Mitocôndrias , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Glicólise , Fosforilação Oxidativa
7.
Methods Mol Biol ; 2002: 129-139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30269299

RESUMO

Cancer stem cells (CSCs) are a subpopulation of cells within a heterogeneous tumor that have enhanced biologic properties such as increased capacity for self-renewal, increased tumorigenicity, enhanced differentiation capacity, and resistance to chemo- and radiotherapies. This unit describes protocols to isolate and characterize potential cancer stem cells from a solid tumor (oral cancer). This involves creating a single-cell suspension from tumor tissue, tagging the cell subpopulation of interest, and sorting cells into different populations. Finally, the sorted subpopulations can be evaluated for their ability to meet the functional requirements of a CSC, which primarily include increased tumorigenicity in an in vivo xenograft assay. Mastering the protocols in this unit will allow the researcher to study populations of cells that may have properties of CSCs.


Assuntos
Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/patologia , Animais , Separação Celular , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Bucais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Methods Mol Biol ; 1854: 209-222, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29855817

RESUMO

Macroautophagy (autophagy) is a conserved lysosomal-based intracellular degradation pathway. Here, we present different methods used for monitoring autophagy at cellular level. The methods involve Atg8/LC3 detection and quantification by Western blot, autophagic flux measurement through Western blot, direct fluorescence microscopy or indirect immunofluorescence, and finally traffic light assay using tf-LC3-II. Monitoring autophagic flux is experimentally challenging but obviously a prerequisite for the proper investigation of the process. These methods are suitable for screening purposes and can be used for measurements in cell lysates as well as in living cells. These assays have proven useful for the identification of genes and small molecules that regulate autophagy in mammalian cells.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Western Blotting , Células HeLa , Humanos , Lisossomos/metabolismo , Microscopia de Fluorescência
9.
Biomed Pharmacother ; 104: 485-495, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29800913

RESUMO

Autophagy, a conserved catabolic process, plays an immensely significant role in a variety of diseases. However, whether it imparts a protective function in diseases remains debatable. During aging, autophagy gradually subsides, manifested by the reduced formation of autophagic vacuoles and improper fusion of these vacuoles with the lysosomes. Similarly, in neurodegenerative disorders, accumulation of tau and synuclein proteins has been attributed to the decline in the autophagic removal of proteins. Equivalently, lysosomal disorders show an impairment of the autophagic process leading to the accumulation of lipid molecules within lysosomes. On the other hand, activation of the autophagic pathway has also proved beneficial in evading various foreign pathogens, thereby contributing to the innate immunity. In the context of cancer, autophagy has shown to play a puzzling role where it serves as a tumor suppressor during initial stages but later protects the tumor cells from the immune system defense mechanisms. Similarly, muscular and heart disorders have been shown to be positively and negatively regulated by autophagy, respectively. In the present review, we, therefore, present a comprehensive review on the role of autophagy in various diseases and their corresponding outcomes.


Assuntos
Autofagia/fisiologia , Doenças Neurodegenerativas/patologia , Animais , Humanos , Lisossomos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA