Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120231, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34365134

RESUMO

Enhanced 'Antenna effect' of a suitably designed ternary complex of Eu(III), Tetracycline hydrochloride (TC) and globular proteins viz bovine serum albumin (BSA), human serum albumin (HSA) and ß-lactoglobulin A (BLGA) in aqueous medium is employed to characterize the different partially unfolded states along with investigation of the micro- heterogeneous environment of the proteins during their stepwise unfolding. The zone-wise perturbation for the proteins upon denaturation by Urea and Guanidine hydrochloride (Gdn. HCl) is followed by the emission of Eu(III) through 'Antenna Effect' and that of the tryptophan (Trp) residues of the proteins as a function of denaturants both by steady state and time resolved emission study. With Gdn. HCl as denaturant, both BSA and BLGA show quenching of Eu(III) emission compared to pure protein while HSA exhibits an enhancement of antenna effect during unfolding as compared to that in its absence. In the presence of Urea, HSA and BSA show enhancement of antenna effect accompanied by Stark splitting of the 5D0→7F2 transition of Eu(III) although BLGA follows the similar pattern of quenching of Eu(III) emission as observed with Gdn. HCl without any Stark splitting. The proteins exhibit a two state transition with ΔGD values of ~ 2-3 kcal mol-1. Thus the use of Eu(III) emission as an efficient probe is advocating here to rationalize the microenvironment of the proteins during their stepwise unfolding.


Assuntos
Tetraciclina , Triptofano , Guanidina , Humanos , Desnaturação Proteica , Espectrometria de Fluorescência
2.
J Biol Inorg Chem ; 23(6): 917-927, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30006868

RESUMO

A ternary system comprising of a Eu(III) complex of the drug Tetracycline hydrochloride (Eu3TC) bound to bovine ß-lactoglobulin variant A (BLGA) in aqueous buffer at physiological pH (pH = 7.4) has been investigated to exploit the enhanced "antenna effect" to locate the bound drug and find the microenvironment of the binding site. Steady-state and time-resolved emission studies at room temperature as well as at 77 K have been carried out to evaluate the binding parameters in the binary system consisting of BLGA and tetracycline hydrochloride (TC). Low-temperature phosphorescence studies at 77 K of pure BLGA confirm Trp 19 to be the emitting residue, while Trp 61 is silent. Enhancement of BLGA phosphorescence emission in the ternary system at 77 K indicates that Trp 19 is very close to Eu(III) in the Eu3TC complex. The molecular docking results further confirm that TC binds close to Trp 19 in a hydrophobic domain. The results thus obtained can provide guidelines to design and synthesize target-oriented drugs as well as suitable bio-probes.


Assuntos
Lactoglobulinas/metabolismo , Medições Luminescentes , Tetraciclina/metabolismo , Animais , Sítios de Ligação , Bovinos , Temperatura Baixa , Simulação de Acoplamento Molecular , Espectrofotometria Ultravioleta
3.
Dalton Trans ; 42(42): 15028-42, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23995286

RESUMO

Reactions of benzoyl pyridine, o-phenylenediamine and anhydrous ZnX2 in methanol afford imine complexes [Zn(L1)X2] (X = Cl, 1; X = Br, 2) in good yields (L1 = (E)-N(1)-(phenyl(pyridin-2-yl)methylene)benzene-1,2-diamine). The reduction of 1 with NaBH4 affords (E)-N(1)-(phenyl(pyridine-2-yl)methylene)benzene-1,2-diamine (L2H). The reaction of L2H with [Ru(II)(PPh3)3Cl2] results in the oxidative dehydrogenation to L1 generating cis-[Ru(II)(L1)(PPh3)Cl2] (3). The reaction of L2H with salicylaldehyde affords (E)-2-(((2-((phenyl(pyridin-2-yl)methyl)amino)phenyl)imino)methyl)phenol (L3H2). The reaction of L3H2 with anhydrous FeCl3 in CH3OH affords cis-[Fe(III)(L3H(-))Cl2] (4). Reaction of L3H2 with [Ru(II)(PPh3)3Cl2] results in the oxidative dehydrogenation to diimine, L4H, affording trans-[Ru(II)(L4(-))(PPh3)2](+), which is isolated as trans-[Ru(II)(L4(-))(PPh3)2]PF6 (5(+)PF6(-)) (L4H = 2-((E)-(2-((E)-phenyl(pyridin-2-yl)methyleneamino)phenylimino)methyl)phenol). The reduction of L3H2 with NaBH4 produces 2-(((2-((phenyl(pyridin-2-yl)methyl)amino)phenyl)amino)methyl)phenol (L5H3). With iron(III) L5H3 undergoes oxidative dehydrogenation to L3H2 affording 4, while with [Ru(II)(PPh3)3Cl2], L5H3 undergoes 4e + 4H(+) transfer giving 5(+). A fluid solution of L3H2 at 298 K exhibits an emission band at 470 nm (λ(ex) = 330 nm, τ1 = 3.70 ns) and a weaker band at 525 nm (λ(ex) = 330, 390 nm, τ1 = 1.1 ns) at higher concentrations due to molecular aggregation, which are temperature dependent. 4 is brightly emissive (λ(ex) = 330 nm, λ(em) = 450 nm, Φ = 0.586, τ1 = 3.70 ns). Time resolved emission spectra (TRES) and lifetime measurements confirm that the lower energy absorption band of L3H2 at 390 nm, which is absent in complex 4, has a larger non-radiative rate constant (k(nr)). The redox innocent Al(III) adduct of L3H2 is fluorescent (λ(ex) = 330 nm, λ(em) = 450 nm, τ1 = 3.70 ns). On the contrary, the cis-[Fe(II)(L3H(-))Cl2](-) and cis-[Co(L3H(-))Cl2](-) analogues are non emissive. Density function theory (DFT) calculations, redox potentials and the near infra-red (NIR) absorption data prove that 4 is emissive due to the stable [Fe(III)(L3H(-)*)] state, while 3, 5(+), cis-[Fe(II)(L3H(-))Cl2](-) and cis-[Co(L3H(-))Cl2](-) are non-emissive due to transformations of the [M(II)(L*)] to [M(III)(L˙(-)*)] states.

4.
Dalton Trans ; 42(36): 13026-35, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23872725

RESUMO

Reaction of α-pyridoin and N-phenyl-o-phenylenediamine affords 2-(2-(phenylamino)phenylimino)-1,2-di(pyridin-2-yl)ethanol (L) which undergoes cyclization to a chiral diimine, 2-methoxy-1-phenyl-2,3-di(pyridin-2-yl)-1,2-dihydroquinoxaline, L(OMe) (conjugated 14πe system) in the presence of zinc(II), cadmium(II) and mercury(II) ions affording [Zn(L(OMe))Cl2] (1), [Cd2(L(OMe))2Cl4] (2) and [Hg2(L(OMe))2Cl4] (3) complexes. Ligand L and complexes 1-3 are substantiated by elemental analyses, mass, IR, (1)H NMR and UV-vis spectra including the single-crystal X-ray structures of 1 and 3. The possibility of the atropisomerism of L is restricted in cyclic L(OMe). L and complexes 1-3 are fluorescent in fluid solutions at 298 K (CH2Cl2: 1, λ(ex) = 470 nm, λ(em) = 627 nm, Φ = 0.014, τ(avg) = 2.5 ns; 2, λ(ex) = 430 nm, λ(em) = 599 nm, Φ = 0.08, τ(avg) = 7.6 ns; 3, λ(ex) = 415 nm, λ(em) = 600 nm, Φ = 0.021, τ(avg) = 2.8 ns). Time-resolved emission spectra (TRES) established that the two-component lifetimes of 1-3 are due to the existence of two conformers. Density functional theory (DFT) and time dependent (TD) DFT calculations authenticated that 1-3 complexes are fluorescent due to intra-ligand charge transfer (ILCT) to the π(diimines)* orbital.

5.
Inorg Chem ; 52(3): 1476-87, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23320645

RESUMO

A simple ternary system containing a protein [human serum albumin (HSA)/bovine serum albumin (BSA)], tetracycline hydrochloride (TC), and Eu(III) in suitable aqueous buffer medium at physiological pH (= 7.2) has been shown to exhibit highly efficient "antenna effect" compared to the binary complex of TC with Eu(III) (Eu(3)TC). The ternary system containing E. coli alkaline phosphatase (AP), TC, and Eu(III), however, shows a slight enhancement of Eu(III) emission, although the binding constant of AP with TC is 2 orders of magnitude greater than with BSA/HSA. The enhanced emission of bound TC in the binary systems containing proteins and TC gets quenched in the ternary systems containing HSA/BSA, showing the efficient energy transfer (ET) from TC to Eu(III). Steady state and time-resolved emission studies of each component in all the ternary systems in H(2)O and in D(2)O medium reveal that Eu(III) is very well protected from the O-H oscillator in the ternary system containing HSA/BSA compared to that containing AP. The docking studies locating the binding site of TC in the proteins suggest that TC binds near the surface of AP. In the case of HSA/BSA, TC resides in the interior of the protein resulting in a large shielding effect of Eu(III). The rotational correlation time (θ(c)) determined from the anisotropy decay of bound TC in the complexes and the accessible surface area (ASA) of the ligand in the complexes obtained from the docking studies also support the contention that Eu(3)TC is more exposed to solvent in the case of the ternary system consisting of AP, TC, and Eu(III). The calculated radiative lifetime and the sensitization efficiency ratio of Eu(III) in all the systems clearly demonstrate the protein mediated tuning of "antenna effect" in Eu(III).


Assuntos
Európio/química , Compostos Organometálicos/química , Albumina Sérica/química , Animais , Sítios de Ligação , Bovinos , Humanos , Modelos Moleculares , Compostos Organometálicos/síntese química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA