RESUMO
The blood-brain barrier poses major hurdles in the treatment of brain-related ailments. Over the past decade, interest in peptides-based therapeutics has thrived a lot because of their higher benefit to risk ratio. However, a complete knowledgebase providing a well-annotated picture of the peptide as a therapeutic molecule to cure brain-related ailments is lacking. We have built up a knowledgebase B3Pdb on blood-brain barrier (BBB)-penetrating peptides in the present study. The B3Pdb holds clinically relevant experimental information on 1225 BBB-penetrating peptides, including mode of delivery, animal model, in vitro/in vivo experiments, chemical modifications, length. Hoping that drug delivery systems can improve central nervous system disorder-related therapeutics. In this regard, B3Pdb is an important resource to support the rational design of therapeutics peptides for CNS-related disorders. The complete ready-to-use and updated database with a user-friendly web interface is available to the scientific community at https://webs.iiitd.edu.in/raghava/b3pdb/ .
Assuntos
Barreira Hematoencefálica , Doenças do Sistema Nervoso Central , Animais , Encéfalo , Sistemas de Liberação de Medicamentos , PeptídeosRESUMO
A web-based resource CoronaVIR (https://webs.iiitd.edu.in/raghava/coronavir/) has been developed to maintain the predicted and existing information on coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have integrated multiple modules, including "Genomics," "Diagnosis," "Immunotherapy," and "Drug Designing" to understand the holistic view of this pandemic medical disaster. The genomics module provides genomic information of different strains of this virus to understand genomic level alterations. The diagnosis module includes detailed information on currently-in-use diagnostics tests as well as five novel universal primer sets predicted using in silico tools. The Immunotherapy module provides information on epitope-based potential vaccine candidates (e.g., LQLPQGTTLPKGFYA, VILLNKHIDAYKTFPPTEPKKDKKKK, EITVATSRTLS, GKGQQQQGQTV, SELVIGAVILR) predicted using state-of-the-art software and resources in the field of immune informatics. These epitopes have the potential to activate both adaptive (e.g., B cell and T cell) and innate (e.g., vaccine adjuvants) immune systems as well as suitable for all strains of SARS-CoV-2. Besides, we have also predicted potential candidates for siRNA-based therapy and RNA-based vaccine adjuvants. The drug designing module maintains information about potential drug targets, tertiary structures, and potential drug molecules. These potential drug molecules were identified from FDA-approved drugs using the docking-based approach. We also compiled information from the literature and Internet on potential drugs, repurposing drugs, and monoclonal antibodies. To understand host-virus interaction, we identified cell-penetrating peptides in the virus. In this study, state-of-the-art techniques have been used for predicting the potential candidates for diagnostics and therapeutics.