Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood Cancer J ; 13(1): 106, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423955

RESUMO

The Janus kinase 2 (JAK2)-driven myeloproliferative neoplasms (MPNs) are chronic malignancies associated with high-risk complications and suboptimal responses to JAK inhibitors such as ruxolitinib. A better understanding of cellular changes induced by ruxolitinib is required to develop new combinatory therapies to improve treatment efficacy. Here, we demonstrate that ruxolitinib induced autophagy in JAK2V617F cell lines and primary MPN patient cells through the activation of protein phosphatase 2A (PP2A). Inhibition of autophagy or PP2A activity along with ruxolitinib treatment reduced proliferation and increased the death of JAK2V617F cells. Accordingly, proliferation and clonogenic potential of JAK2V617F-driven primary MPN patient cells, but not of normal hematopoietic cells, were markedly impaired by ruxolitinib treatment with autophagy or PP2A inhibitor. Finally, preventing ruxolitinib-induced autophagy with a novel potent autophagy inhibitor Lys05 improved leukemia burden reduction and significantly prolonged the mice's overall survival compared with ruxolitinib alone. This study demonstrates that PP2A-dependent autophagy mediated by JAK2 activity inhibition contributes to resistance to ruxolitinib. Altogether, our data support that targeting autophagy or its identified regulator PP2A could enhance sensitivity to ruxolitinib of JAK2V617F MPN cells and improve MPN patient care.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Camundongos , Animais , Janus Quinase 2 , Proteína Fosfatase 2/genética , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Autofagia , Mutação
2.
Cancer Res ; 83(15): 2461-2470, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272750

RESUMO

Dependency on mitochondrial oxidative phosphorylation (OxPhos) is a potential weakness for leukemic stem cells (LSC) that can be exploited for therapeutic purposes. Fatty acid oxidation (FAO) is a crucial OxPhos-fueling catabolic pathway for some acute myeloid leukemia (AML) cells, particularly chemotherapy-resistant AML cells. Here, we identified cold sensitivity at 4°C (cold killing challenge; CKC4), commonly used for sample storage, as a novel vulnerability that selectively kills AML LSCs with active FAO-supported OxPhos while sparing normal hematopoietic stem cells. Cell death of OxPhos-positive leukemic cells was induced by membrane permeabilization at 4°C; by sharp contrast, leukemic cells relying on glycolysis were resistant. Forcing glycolytic cells to activate OxPhos metabolism sensitized them to CKC4. Lipidomic and proteomic analyses showed that OxPhos shapes the composition of the plasma membrane and introduces variation of 22 lipid subfamilies between cold-sensitive and cold-resistant cells. Together, these findings indicate that steady-state energy metabolism at body temperature predetermines the sensitivity of AML LSCs to cold temperature, suggesting that cold sensitivity could be a potential OxPhos biomarker. These results could have important implications for designing experiments for AML research to avoid cell storage at 4°C. SIGNIFICANCE: Mitochondrial metabolism fueled by FAO alters the membrane composition and introduces membrane fragility upon cold exposure in OxPhos-driven AML and in LSCs. See related commentary by Jones, p. 2441.


Assuntos
Leucemia Mieloide Aguda , Fosforilação Oxidativa , Humanos , Temperatura Baixa , Proteômica , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Hematopoéticas/metabolismo , Ácidos Graxos/metabolismo , Células-Tronco Neoplásicas/metabolismo
3.
Cancer Res ; 83(17): 2824-2838, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327406

RESUMO

Identifying mechanisms underlying relapse is a major clinical issue for effective cancer treatment. The emerging understanding of the importance of metastasis in hematologic malignancies suggests that it could also play a role in drug resistance and relapse in acute myeloid leukemia (AML). In a cohort of 1,273 AML patients, we uncovered that the multifunctional scavenger receptor CD36 was positively associated with extramedullary dissemination of leukemic blasts, increased risk of relapse after intensive chemotherapy, and reduced event-free and overall survival. CD36 was dispensable for lipid uptake but fostered blast migration through its binding with thrombospondin-1. CD36-expressing blasts, which were largely enriched after chemotherapy, exhibited a senescent-like phenotype while maintaining their migratory ability. In xenograft mouse models, CD36 inhibition reduced metastasis of blasts and prolonged survival of chemotherapy-treated mice. These results pave the way for the development of CD36 as an independent marker of poor prognosis in AML patients and a promising actionable target to improve the outcome of patients. SIGNIFICANCE: CD36 promotes blast migration and extramedullary disease in acute myeloid leukemia and represents a critical target that can be exploited for clinical prognosis and patient treatment.


Assuntos
Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Leucemia Mieloide Aguda/patologia , Resultado do Tratamento , Prognóstico , Recidiva , Crise Blástica/patologia , Doença Crônica
4.
Cancer Discov ; 13(7): 1720-1747, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37012202

RESUMO

Although transcription factor CCAAT-enhancer binding protein α (C/EBPα) is critical for normal and leukemic differentiation, its role in cell and metabolic homeostasis is largely unknown in cancer. Here, multiomics analyses uncovered a coordinated activation of C/EBPα and Fms-like tyrosine kinase 3 (FLT3) that increased lipid anabolism in vivo and in patients with FLT3-mutant acute myeloid leukemia (AML). Mechanistically, C/EBPα regulated the fatty acid synthase (FASN)-stearoyl-CoA desaturase (SCD) axis to promote fatty acid (FA) biosynthesis and desaturation. We further demonstrated that FLT3 or C/EBPα inactivation decreased monounsaturated FA incorporation to membrane phospholipids through SCD downregulation. Consequently, SCD inhibition enhanced susceptibility to lipid redox stress that was exploited by combining FLT3 and glutathione peroxidase 4 inhibition to trigger lipid oxidative stress, enhancing ferroptotic death of FLT3-mutant AML cells. Altogether, our study reveals a C/EBPα function in lipid homeostasis and adaptation to redox stress, and a previously unreported vulnerability of FLT3-mutant AML to ferroptosis with promising therapeutic application. SIGNIFICANCE: FLT3 mutations are found in 30% of AML cases and are actionable by tyrosine kinase inhibitors. Here, we discovered that C/EBPα regulates FA biosynthesis and protection from lipid redox stress downstream mutant-FLT3 signaling, which confers a vulnerability to ferroptosis upon FLT3 inhibition with therapeutic potential in AML. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Humanos , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Ácidos Graxos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Estresse Oxidativo , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral
5.
Leukemia ; 36(5): 1237-1252, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35354920

RESUMO

Despite recent advances in acute myeloid leukemia (AML) molecular characterization and targeted therapies, a majority of AML cases still lack therapeutically actionable targets. In 127 AML cases with unmet therapeutic needs, as defined by the exclusion of ELN favorable cases and of FLT3-ITD mutations, we identified 51 (40%) cases with alterations in RAS pathway genes (RAS+, mostly NF1, NRAS, KRAS, and PTPN11 genes). In 79 homogeneously treated AML patients from this cohort, RAS+ status were associated with higher white blood cell count, higher LDH, and reduced survival. In AML models of oncogenic addiction to RAS-MEK signaling, the MEK inhibitor trametinib demonstrated antileukemic activity in vitro and in vivo. However, the efficacy of trametinib was heterogeneous in ex vivo cultures of primary RAS+ AML patient specimens. From repurposing drug screens in RAS-activated AML cells, we identified pyrvinium pamoate, an anti-helminthic agent efficiently inhibiting the growth of RAS+ primary AML cells ex vivo, preferentially in trametinib-resistant PTPN11- or KRAS-mutated samples. Metabolic and genetic complementarity between trametinib and pyrvinium pamoate translated into anti-AML synergy in vitro. Moreover, this combination inhibited the propagation of RA+ AML cells in vivo in mice, indicating a potential for future clinical development of this strategy in AML.


Assuntos
Leucemia Mieloide Aguda , Mutações Sintéticas Letais , Animais , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação , Estresse Oxidativo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo
6.
J Am Assoc Lab Anim Sci ; 61(2): 188-194, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022109

RESUMO

Nonterminal blood sampling in laboratory mice is a very common procedure. With the goal of improving animal welfare, different sampling sites and methods have been compared but have not achieved a consensus. Moreover, most of these studies overlooked the quality of blood specimens collected. The main preanalytical concern with EDTA-treated blood specimens for hematology analyses is platelet aggregation, which is known to cause analytical errors. Our objective was to find a nonterminal blood sampling method with minimal adverse effects on mice and few or no platelet aggregates. We tested and compared 2 collection sites, 4 sampling methods, and 3 antithrombotic drugs in 80 C57BL6/j male and female mice by evaluating platelet aggregates on blood smears and platelet, WBC, and RBC counts. In addition, the blood collection process was carefully evaluated, and adverse effects were recorded. Platelet aggregation was lower in specimens collected from the jugular vein than from the facial vein, with no effect of the sampling device or the presence of an antithrombotic additive. Highly aggregated specimens were significantly associated with lower platelet counts, whereas aggregation had no effect on WBC or RBC counts. Adverse events during sampling were significantly associated with more numerous platelet aggregates. The jugular vein is thus a satisfactory sampling site in mice in terms of both animal welfare and low platelet aggregation. Using antithrombotic agents appears to be unnecessary, whereas improving sampling conditions remains a key requirement to ensure the quality of EDTA-treated blood specimens from mice.


Assuntos
Plaquetas , Agregação Plaquetária , Animais , Ácido Edético/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contagem de Plaquetas
7.
Cell Rep ; 38(1): 110197, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986346

RESUMO

AMP-activated protein kinase (AMPK) regulates the balance between cellular anabolism and catabolism dependent on energy resources to maintain proliferation and survival. Small-compound AMPK activators show anti-cancer activity in preclinical models. Using the direct AMPK activator GSK621, we show that the unfolded protein response (UPR) is activated by AMPK in acute myeloid leukemia (AML) cells. Mechanistically, the UPR effector protein kinase RNA-like ER kinase (PERK) represses oxidative phosphorylation, tricarboxylic acid (TCA) cycle, and pyrimidine biosynthesis and primes the mitochondrial membrane to apoptotic signals in an AMPK-dependent manner. Accordingly, in vitro and in vivo studies reveal synergy between the direct AMPK activator GSK621 and the Bcl-2 inhibitor venetoclax. Thus, selective AMPK-activating compounds kill AML cells by rewiring mitochondrial metabolism that primes mitochondria to apoptosis by BH3 mimetics, holding therapeutic promise in AML.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Imidazóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Pirimidinonas/farmacologia , Sulfonamidas/farmacologia , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Apoptose/fisiologia , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Células HEK293 , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Células THP-1 , Células U937 , Adulto Jovem
8.
Cancers (Basel) ; 13(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34680392

RESUMO

Relapses and resistance to therapeutic agents are major barriers in the treatment of acute myeloid leukemia (AML) patients. These unfavorable outcomes emphasize the need for new strategies targeting drug-resistant cells. As IDH mutations are present in the preleukemic stem cells and systematically conserved at relapse, targeting IDH mutant cells could be essential to achieve a long-term remission in the IDH mutant AML subgroup. Here, using a panel of human AML cell lines and primary AML patient specimens harboring IDH mutations, we showed that the production of an oncometabolite (R)-2-HG by IDH mutant enzymes induces vitamin D receptor-related transcriptional changes, priming these AML cells to differentiate with pharmacological doses of ATRA and/or VD. This activation occurs in a CEBPα-dependent manner. Accordingly, our findings illuminate potent and cooperative effects of IDH mutations and the vitamin D receptor pathway on differentiation in AML, revealing a novel therapeutic approach easily transferable/immediately applicable to this subgroup of AML patients.

9.
Cancers (Basel) ; 13(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34298712

RESUMO

Oxidative metabolism is crucial for leukemic stem cell (LSC) function and drug resistance in acute myeloid leukemia (AML). Mitochondrial metabolism also affects the immune system and therefore the anti-tumor response. The modulation of oxidative phosphorylation (OxPHOS) has emerged as a promising approach to improve the therapy outcome for AML patients. However, the effect of mitochondrial inhibitors on the immune compartment in the context of AML is yet to be explored. Immune checkpoints such as ectonucleotidase CD39 and programmed dead ligand 1 (PD-L1) have been reported to be expressed in AML and linked to chemo-resistance and a poor prognosis. In the present study, we first demonstrated that a novel selective electron transfer chain complex (ETC) I inhibitor, EVT-701, decreased the OxPHOS metabolism of murine and human cytarabine (AraC)-resistant leukemic cell lines. Furthermore, we showed that while AraC induced an immune response regulation by increasing CD39 expression and by reinforcing the interferon-γ/PD-L1 axis, EVT-701 reduced CD39 and PD-L1 expression in vitro in a panel of both murine and human AML cell lines, especially upon AraC treatment. Altogether, this work uncovers a non-canonical function of ETCI in controlling CD39 and PD-L1 immune checkpoints, thereby improving the anti-tumor response in AML.

10.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760042

RESUMO

Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid ß-oxidation of IDH1 mutant cells. While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrial-targeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDH mutant inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Isocitrato Desidrogenase/genética , Leucemia Mieloide/genética , Mitocôndrias/genética , Mutação , Doença Aguda , Aminopiridinas/farmacologia , Animais , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Células HL-60 , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxidiazóis/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia , Triazinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Nat Commun ; 12(1): 422, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462236

RESUMO

Drug tolerant/resistant leukemic stem cell (LSC) subpopulations may explain frequent relapses in acute myeloid leukemia (AML), suggesting that these relapse-initiating cells (RICs) persistent after chemotherapy represent bona fide targets to prevent drug resistance and relapse. We uncover that calcitonin receptor-like receptor (CALCRL) is expressed in RICs, and that the overexpression of CALCRL and/or of its ligand adrenomedullin (ADM), and not CGRP, correlates to adverse outcome in AML. CALCRL knockdown impairs leukemic growth, decreases LSC frequency, and sensitizes to cytarabine in patient-derived xenograft models. Mechanistically, the ADM-CALCRL axis drives cell cycle, DNA repair, and mitochondrial OxPHOS function of AML blasts dependent on E2F1 and BCL2. Finally, CALCRL depletion reduces LSC frequency of RICs post-chemotherapy in vivo. In summary, our data highlight a critical role of ADM-CALCRL in post-chemotherapy persistence of these cells, and disclose a promising therapeutic target to prevent relapse in AML.


Assuntos
Adrenomedulina/metabolismo , Antineoplásicos/farmacologia , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Animais , Antineoplásicos/uso terapêutico , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/prevenção & controle , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Cultura Primária de Células , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nat Cancer ; 2(11): 1204-1223, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35122057

RESUMO

Therapy resistance represents a major clinical challenge in acute myeloid leukemia (AML). Here we define a 'MitoScore' signature, which identifies high mitochondrial oxidative phosphorylation in vivo and in patients with AML. Primary AML cells with cytarabine (AraC) resistance and a high MitoScore relied on mitochondrial Bcl2 and were highly sensitive to venetoclax (VEN) + AraC (but not to VEN + azacytidine). Single-cell transcriptomics of VEN + AraC-residual cell populations revealed adaptive resistance associated with changes in oxidative phosphorylation, electron transport chain complex and the TP53 pathway. Accordingly, treatment of VEN + AraC-resistant AML cells with electron transport chain complex inhibitors, pyruvate dehydrogenase inhibitors or mitochondrial ClpP protease agonists substantially delayed relapse following VEN + AraC. These findings highlight the central role of mitochondrial adaptation during AML therapy and provide a scientific rationale for alternating VEN + azacytidine with VEN + AraC in patients with a high MitoScore and to target mitochondrial metabolism to enhance the sensitivity of AML cells to currently approved therapies.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Azacitidina/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citarabina/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA