Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39211265

RESUMO

The material properties of muscle play a central role in how muscle resists joint motion, transmits forces internally, and repairs itself. While many studies have evaluated muscle's tensile material properties, few have investigated muscle's shear properties. The objective of this study was to quantify the shear moduli of skeletal muscle both along (along-muscle fiber) and perpendicular (cross-muscle fiber) to the direction of muscle fibers. We collected data from the extensor digitorum longus, tibialis anterior, and soleus muscles harvested from both hindlimbs of 12 rats. These muscles were chosen to further evaluate the consistency of shear moduli across muscles with different architectures. We applied strains and measured stress in three configurations: parallel, perpendicular, and across the muscle fibers to characterize the along- and cross-muscle fiber tensile and shear material parameters. We found no significant difference between the shear modulus measured parallel to the fibers (along-muscle fiber) and the shear modulus in the plane perpendicular to the fibers (cross-muscle fiber). Although the shear moduli were not significantly different, there was a greater difference with increasing strain, suggesting that there is greater anisotropy at larger strains. We also found no significant difference in moduli between the muscles with differing muscle architecture. These results characterize the shear behavior of skeletal muscle and are relevant to understanding the role of shear in force transmission and injury.

2.
J R Soc Interface ; 21(211): 20230478, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38320599

RESUMO

Collagen accumulation is often used to characterize skeletal muscle fibrosis, but the role of collagen in passive muscle mechanics remains debated. Here we combined finite-element models and experiments to examine how collagen organization contributes to macroscopic muscle tissue properties. Tissue microstructure and mechanical properties were measured from in vitro biaxial experiments and imaging in dystrophin knockout (mdx) and wild-type (WT) diaphragm muscle. Micromechanical models of intramuscular and epimuscular extracellular matrix (ECM) regions were developed to account for complex microstructure and predict bulk properties, and directly calibrated and validated with the experiments. The models predicted that intramuscular collagen fibres align primarily in the cross-muscle fibre direction, with greater cross-muscle fibre alignment in mdx models compared with WT. Higher cross-muscle fibre stiffness was predicted in mdx models compared with WT models and differences between ECM and muscle properties were seen during cross-muscle fibre loading. Analysis of the models revealed that variation in collagen fibre distribution had a much more substantial impact on tissue stiffness than ECM area fraction. Taken together, we conclude that collagen organization explains anisotropic tissue properties observed in the diaphragm muscle and provides an explanation for the lack of correlation between collagen amount and tissue stiffness across experimental studies.


Assuntos
Colágeno , Matriz Extracelular , Fenômenos Biomecânicos , Colágeno/química , Matriz Extracelular/química , Músculos , Músculo Esquelético/fisiologia
3.
J Appl Physiol (1985) ; 132(3): 653-672, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35050792

RESUMO

In Duchenne muscular dystrophy (DMD), diaphragm muscle dysfunction results in respiratory insufficiency, a leading cause of death in patients. Increased muscle stiffness occurs with buildup of fibrotic tissue, characterized by excessive accumulation of extracellular matrix (ECM) components such as collagen, and prevents the diaphragm from achieving the excursion lengths required for respiration. However, changes in mechanical properties are not explained by collagen amount alone and we must consider the complex structure and mechanics of fibrotic tissue. The goals of our study were to 1) determine if and how collagen organization changes with the progression of DMD in diaphragm muscle tissue and 2) predict how collagen organization influences the mechanical properties of the ECM. We first visualized collagen structure with scanning electron microscopy (SEM) images and then developed an analysis framework to quantify collagen organization and generate image-based finite-element models. Image analysis revealed increased collagen fiber straightness and alignment in mdx over wild type (WT) at 3 mo (straightness: mdx = 0.976 ± 0.0108, WT = 0.887 ± 0.0309, alignment: mdx = 0.876 ± 0.0333, WT = 0.759 ± 0.0416) and 6 mo (straightness: mdx = 0.942 ± 0.0182, WT = 0.881 ± 0.0163, alignment: mdx = 0.840 ± 0.0315, WT = 0.759 ± 0.0368). Collagen fibers retained a transverse orientation relative to muscle fibers (70°-90°) in all groups. Mechanical models predicted an increase in the transverse relative to longitudinal (muscle fiber direction) stiffness, with stiffness ratio (transverse/longitudinal) increased in mdx over WT at 3 mo (mdx = 5.45 ± 2.04, WT = 1.97 ± 0.670) and 6 mo (mdx = 4.05 ± 0.985, WT = 1.96 ± 0.506). This study revealed changes in diaphragm ECM structure and mechanics during disease progression in the mdx muscular dystrophy mouse phenotype, highlighting the need to consider the role of collagen organization on diaphragm muscle function.NEW & NOTEWORTHY Scanning electron microscopy images of decellularized diaphragm muscle from WT and mdx, Duchenne muscular dystrophy model, mice revealed that collagen fibers in the epimysium are oriented transverse to muscle fibers, with age- and disease-dependent changes in collagen arrangement. Finite-element models generated from these images predicted that changes in collagen arrangement during disease progression influence the mechanical properties of the extracellular matrix. Thus, changes in collagen fiber-level structure are implicated on tissue-level properties during fibrosis.


Assuntos
Colágeno , Diafragma , Fibrose , Distrofia Muscular de Duchenne , Animais , Colágeno/ultraestrutura , Diafragma/patologia , Modelos Animais de Doenças , Fibrose/complicações , Fibrose/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Microscopia Eletrônica de Varredura , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA