Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 65(2): 100497, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38216056

RESUMO

Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of disease burden in the world and is highly correlated with chronic elevations of LDL-C. LDL-C-lowering drugs, such as statins or monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9), are known to reduce the risk of cardiovascular diseases; however, statins are associated with limited efficacy and poor adherence to treatment, whereas PCSK9 inhibitors are only prescribed to a "high-risk" patient population or those who have failed other therapies. Based on the proven efficacy and safety profile of existing monoclonal antibodies, we have developed a peptide-based vaccine against PCSK9, VXX-401, as an alternative option to treat hypercholesterolemia and prevent ASCVD. VXX-401 is designed to trigger a safe humoral immune response against PCSK9, resulting in the production of endogenous antibodies and a subsequent 30-40% reduction in blood LDL-C. In this article, VXX-401 demonstrates robust immunogenicity and sustained serum LDL-C-lowering effects in nonhuman primates. In addition, antibodies induced by VXX-401 bind to human PCSK9 with high affinity and block the inhibitory effect of PCSK9 on LDL-C uptake in a hepatic cell model. A repeat-dose toxicity study conducted in nonhuman primates under good laboratory practices toxicity indicated a suitable safety and tolerability profile, with injection site reactions being the main findings. As a promising safe and effective LDL-C-lowering therapy, VXX-401 may represent a broadly accessible and convenient option to treat hypercholesterolemia and prevent ASCVD.


Assuntos
Anticolesterolemiantes , Aterosclerose , Inibidores de Hidroximetilglutaril-CoA Redutases , Hipercolesterolemia , Animais , Humanos , Pró-Proteína Convertase 9 , Hipercolesterolemia/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , LDL-Colesterol , Macaca fascicularis , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Aterosclerose/metabolismo
2.
Vaccines (Basel) ; 12(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38250853

RESUMO

Antibodies provide critical protective immunity against COVID-19, and the Fc-mediated effector functions and mucosal antibodies also contribute to the protection. To expand the characterization of humoral immunity stimulated by subunit protein-peptide COVID-19 vaccine UB-612, preclinical studies in non-human primates were undertaken to investigate mucosal secretion and the effector functionality of vaccine-induced antibodies in antibody-dependent monocyte phagocytosis (ADMP) and antibody-dependent NK cell activation (ADNKA) assays. In cynomolgus macaques, UB-612 induced potent serum-neutralizing, RBD-specific IgG binding, ACE2 binding-inhibition antibodies, and antibodies with Fc-mediated effector functions in ADMP and ADNKA assays. Additionally, immunized animals developed mucosal antibodies in bronchoalveolar lavage fluids (BAL). The level of mucosal or serum ADMP and ADNKA antibodies was found to be UB-612 dose-dependent. Our results highlight that the novel subunit UB-612 vaccine is a potent B-cell immunogen inducing polyfunctional antibody responses contributing to anti-viral immunity and vaccine efficacy.

3.
Infect Control Hosp Epidemiol ; 43(7): 876-885, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34016200

RESUMO

OBJECTIVE: The coronavirus disease 2019 (COVID-19) pandemic has resulted in shortages of personal protective equipment (PPE), underscoring the urgent need for simple, efficient, and inexpensive methods to decontaminate masks and respirators exposed to severe acute respiratory coronavirus virus 2 (SARS-CoV-2). We hypothesized that methylene blue (MB) photochemical treatment, which has various clinical applications, could decontaminate PPE contaminated with coronavirus. DESIGN: The 2 arms of the study included (1) PPE inoculation with coronaviruses followed by MB with light (MBL) decontamination treatment and (2) PPE treatment with MBL for 5 cycles of decontamination to determine maintenance of PPE performance. METHODS: MBL treatment was used to inactivate coronaviruses on 3 N95 filtering facepiece respirator (FFR) and 2 medical mask models. We inoculated FFR and medical mask materials with 3 coronaviruses, including SARS-CoV-2, and we treated them with 10 µM MB and exposed them to 50,000 lux of white light or 12,500 lux of red light for 30 minutes. In parallel, integrity was assessed after 5 cycles of decontamination using multiple US and international test methods, and the process was compared with the FDA-authorized vaporized hydrogen peroxide plus ozone (VHP+O3) decontamination method. RESULTS: Overall, MBL robustly and consistently inactivated all 3 coronaviruses with 99.8% to >99.9% virus inactivation across all FFRs and medical masks tested. FFR and medical mask integrity was maintained after 5 cycles of MBL treatment, whereas 1 FFR model failed after 5 cycles of VHP+O3. CONCLUSIONS: MBL treatment decontaminated respirators and masks by inactivating 3 tested coronaviruses without compromising integrity through 5 cycles of decontamination. MBL decontamination is effective, is low cost, and does not require specialized equipment, making it applicable in low- to high-resource settings.


Assuntos
COVID-19 , Viroses , COVID-19/prevenção & controle , Descontaminação/métodos , Reutilização de Equipamento , Humanos , Máscaras , Azul de Metileno/farmacologia , Respiradores N95 , Equipamento de Proteção Individual , SARS-CoV-2
4.
Mol Ther Methods Clin Dev ; 4: 192-203, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28345004

RESUMO

Gene editing by homology-directed recombination (HDR) can be used to couple delivery of a therapeutic gene cassette with targeted genomic modifications to generate engineered human T cells with clinically useful profiles. Here, we explore the functionality of therapeutic cassettes delivered by these means and test the flexibility of this approach to clinically relevant alleles. Because CCR5-negative T cells are resistant to HIV-1 infection, CCR5-negative anti-CD19 chimeric antigen receptor (CAR) T cells could be used to treat patients with HIV-associated B cell malignancies. We show that targeted delivery of an anti-CD19 CAR cassette to the CCR5 locus using a recombinant AAV homology template and an engineered megaTAL nuclease results in T cells that are functionally equivalent, in both in vitro and in vivo tumor models, to CAR T cells generated by random integration using lentiviral delivery. With the goal of developing off-the-shelf CAR T cell therapies, we next targeted CARs to the T cell receptor alpha constant (TRAC) locus by HDR, producing TCR-negative anti-CD19 CAR and anti-B cell maturation antigen (BCMA) CAR T cells. These novel cell products exhibited in vitro cytolytic activity against both tumor cell lines and primary cell targets. Our combined results indicate that high-efficiency HDR delivery of therapeutic genes may provide a flexible and robust method that can extend the clinical utility of cell therapeutics.

5.
Mol Ther ; 25(3): 570-579, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143740

RESUMO

The treatment or cure of HIV infection by cell and gene therapy has been a goal for decades. Recent advances in both gene editing and chimeric antigen receptor (CAR) technology have created new therapeutic possibilities for a variety of diseases. Broadly neutralizing monoclonal antibodies (bNAbs) with specificity for the HIV envelope glycoprotein provide a promising means of targeting HIV-infected cells. Here we show that primary human T cells engineered to express anti-HIV CARs based on bNAbs (HIVCAR) show specific activation and killing of HIV-infected versus uninfected cells in the absence of HIV replication. We also show that homology-directed recombination of the HIVCAR gene expression cassette into the CCR5 locus enhances suppression of replicating virus compared with HIVCAR expression alone. This work demonstrates that HIV immunotherapy utilizing potent bNAb-based single-chain variable fragments fused to second-generation CAR signaling domains, delivered directly into the CCR5 locus of T cells by homology-directed gene editing, is feasible and effective. This strategy has the potential to target HIV-infected cells in HIV-infected individuals, which might help in the effort to cure HIV.


Assuntos
Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/terapia , HIV-1/imunologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Citotoxicidade Imunológica , Epitopos/imunologia , Ordem dos Genes , Engenharia Genética , Vetores Genéticos/genética , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/genética , Humanos , Imunoterapia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores CCR5/genética , Receptores CCR5/metabolismo , Anticorpos de Cadeia Única , Replicação Viral
6.
Sci Rep ; 6: 33459, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628598

RESUMO

TRPM7 is a member of the Transient-Receptor-Potential Melastatin ion channel family. TRPM7 is a unique fusion protein of an ion channel and an α-kinase. Although mammalian TRPM7 is well characterized biophysically and its pivotal role in cancer, ischemia and cardiovascular disease is becoming increasingly evident, the study of TRPM7 in mouse models has been hampered by embryonic lethality of transgenic ablations. In zebrafish, functional loss of TRPM7 (drTRPM7) manifests itself in an array of non-lethal physiological malfunctions. Here, we investigate the regulation of wild type drTRPM7 and multiple C-terminal truncation mutants. We find that the biophysical properties of drTRPM7 are very similar to mammalian TRPM7. However, pharmacological profiling reveals that drTRPM7 is facilitated rather than inhibited by 2-APB, and that the TRPM7 inhibitor waixenicin A has no effect. This is reminiscent of the pharmacological profile of human TRPM6, the sister channel kinase of TRPM7. Furthermore, using truncation mutations, we show that the coiled-coil domain of drTRPM7 is involved in the channel's regulation by magnesium (Mg) and Mg·adenosine triphosphate (Mg·ATP). We propose that drTRPM7 has two protein domains that regulate inhibition by intracellular magnesium and nucleotides, and one domain that is concerned with sensing magnesium only.


Assuntos
Trifosfato de Adenosina/farmacologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/química , Canais de Cátion TRPM/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Fenômenos Biofísicos , Compostos de Boro/farmacologia , Proliferação de Células/efeitos dos fármacos , Galinhas , Condutividade Elétrica , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Fígado/metabolismo , Magnésio/farmacologia , Proteínas Mutantes/farmacologia , Concentração Osmolar , Domínios Proteicos , Relação Estrutura-Atividade
7.
Mol Ther ; 24(9): 1570-80, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27203437

RESUMO

Many future therapeutic applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 and related RNA-guided nucleases are likely to require their use to promote gene targeting, thus necessitating development of methods that provide for delivery of three components-Cas9, guide RNAs and recombination templates-to primary cells rendered proficient for homology-directed repair. Here, we demonstrate an electroporation/transduction codelivery method that utilizes mRNA to express both Cas9 and mutant adenoviral E4orf6 and E1b55k helper proteins in association with adeno-associated virus (AAV) vectors expressing guide RNAs and recombination templates. By transiently enhancing target cell permissiveness to AAV transduction and gene editing efficiency, this novel approach promotes efficient gene disruption and/or gene targeting at multiple loci in primary human T-cells, illustrating its broad potential for application in translational gene editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Proteínas Mutantes , Linfócitos T/metabolismo , Proteínas Virais/metabolismo , Dependovirus/genética , Expressão Gênica , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Ordem dos Genes , Marcação de Genes , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Recombinação Homóloga , Humanos , RNA Guia de Cinetoplastídeos/genética , Transdução Genética , Proteínas Virais/genética
8.
Mol Ther Nucleic Acids ; 5: e306, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27093168

RESUMO

Increasing demand for large-scale synthesis of in vitro transcribed (IVT) mRNA is being driven by the increasing use of mRNA for transient gene expression in cell engineering and therapeutic applications. An important determinant of IVT mRNA potency is the 3' polyadenosine (poly(A)) tail, the length of which correlates with translational efficiency. However, present methods for generation of IVT mRNA rely on templates derived from circular plasmids or PCR products, in which homopolymeric tracts are unstable, thus limiting encoded poly(A) tail lengths to ~120 base pairs (bp). Here, we have developed a novel method for generation of extended poly(A) tracts using a previously described linear plasmid system, pJazz. We find that linear plasmids can successfully propagate poly(A) tracts up to ~500 bp in length for IVT mRNA production. We then modified pJazz by removing extraneous restriction sites, adding a T7 promoter sequence upstream from an extended multiple cloning site, and adding a unique type-IIS restriction site downstream from the encoded poly(A) tract to facilitate generation of IVT mRNA with precisely defined encoded poly(A) tracts and 3' termini. The resulting plasmid, designated pEVL, can be used to generate IVT mRNA with consistent defined lengths and terminal residue(s).

9.
Sci Transl Med ; 7(307): 307ra156, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424571

RESUMO

Genetic mutations or engineered nucleases that disrupt the HIV co-receptor CCR5 block HIV infection of CD4(+) T cells. These findings have motivated the engineering of CCR5-specific nucleases for application as HIV therapies. The efficacy of this approach relies on efficient biallelic disruption of CCR5, and the ability to efficiently target sequences that confer HIV resistance to the CCR5 locus has the potential to further improve clinical outcomes. We used RNA-based nuclease expression paired with adeno-associated virus (AAV)-mediated delivery of a CCR5-targeting donor template to achieve highly efficient targeted recombination in primary human T cells. This method consistently achieved 8 to 60% rates of homology-directed recombination into the CCR5 locus in T cells, with over 80% of cells modified with an MND-GFP expression cassette exhibiting biallelic modification. MND-GFP-modified T cells maintained a diverse repertoire and engrafted in immune-deficient mice as efficiently as unmodified cells. Using this method, we integrated sequences coding chimeric antigen receptors (CARs) into the CCR5 locus, and the resulting targeted CAR T cells exhibited antitumor or anti-HIV activity. Alternatively, we introduced the C46 HIV fusion inhibitor, generating T cell populations with high rates of biallelic CCR5 disruption paired with potential protection from HIV with CXCR4 co-receptor tropism. Finally, this protocol was applied to adult human mobilized CD34(+) cells, resulting in 15 to 20% homologous gene targeting. Our results demonstrate that high-efficiency targeted integration is feasible in primary human hematopoietic cells and highlight the potential of gene editing to engineer T cell products with myriad functional properties.


Assuntos
Desoxirribonucleases/metabolismo , Dependovirus/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Receptores CCR5/metabolismo , Adulto , Antígenos CD34/metabolismo , Complexo CD3/metabolismo , Células Cultivadas , Reparo do DNA , Loci Gênicos , Terapia Genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Edição de RNA/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo
10.
Mol Aspects Med ; 34(2-3): 620-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23506895

RESUMO

Magnesium is one of the most predominant intracellular divalent cations and is requisite to the regulation of a diverse array of cellular functions. Although accumulating data from multiple studies have begun to illuminate the critical role(s) played by Mg(2+) transporters in pathways involved in cell signaling, metabolism, growth and proliferation, there is still a lack of understanding of the underlying molecular mechanisms that govern those various functions. In this review, we focus on the recently described SLC41 family of magnesium transporters, two members of which have been shown to mediate Mg(2+) uptake and transport, and highlight what is known about their expression, localization, and function, as well as their roles and contributions to cellular Mg(2+) transport.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/fisiologia , Magnésio/metabolismo , Modelos Moleculares , Família Multigênica/genética , Conformação Proteica , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Modelos Biológicos , Dados de Sequência Molecular , Alinhamento de Sequência , Transdução de Sinais/genética
11.
PLoS One ; 7(9): e44452, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970223

RESUMO

Recent studies have shown that the vertebrate magnesium transporters Solute carrier family 41, members 1 and 2 (SLC41A1, SLC41A2) and Magnesium transporter subtype 1 (MagT1) can endow vertebrate B-cells lacking the ion-channel kinase Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) with a capacity to grow and proliferate. SLC41A1 and SLC41A2 display distant homology to the prokaryotic family of Mg(2+) transporters, MgtE, first characterized in Bacillus subtilis. These sequence similarities prompted us to investigate whether MgtE could potentially compensate for the lack of TRPM7 in the vertebrate TRPM7-deficient DT40 B-cell model system. Here, we report that overexpression of MgtE is able to rescue the growth of TRPM7-KO DT40 B-cells. However, contrary to a previous report that describes regulation of MgtE channel gating by Mg(2+) in a bacterial spheroplast model system, whole cell patch clamp analysis revealed no detectable current development in TRPM7-deficient cells expressing MgtE. In addition, we observed that MgtE expression is strongly downregulated at high magnesium concentrations, similar to what has been described for its vertebrate homolog, SLC41A1. We also show that the N-terminal cytoplasmic domain of MgtE is required for normal MgtE channel function, functionally confirming the predicted importance of this domain in regulation of MgtE-mediated Mg(2+) entry. Overall, our findings show that consistent with its proposed function, Mg(2+) uptake mediated by MgtE is able to restore cell growth and proliferation of TRPM7-deficient cells and supports the concept of functional homology between MgtE and its vertebrate homologs.


Assuntos
Antiporters/fisiologia , Linfócitos B/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/fisiologia , Canais de Cátion TRPM/metabolismo , Sequência de Aminoácidos , Animais , Antiporters/química , Linfócitos B/citologia , Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Divisão Celular , Linhagem Celular , Galinhas , Humanos , Magnésio/metabolismo , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
12.
Biochem J ; 439(1): 129-39, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21696366

RESUMO

SLC41A1 (solute carrier family 41, member A1) is a recently described vertebrate member of the MgtE family of Mg(2+) transporters. Although MgtE transporters are found in both prokaryotic and eukaryotic organisms, and are highly conserved, little is known about the regulation of their Mg(2+) transport function. In the present study, we have shown that endogenous SLC41A1 transporter expression is post-transcriptionally regulated by extracellular Mg(2+) in TRPM7 (transient receptor potential cation channel, subfamily M, member 7)-deficient cells, suggesting that SLC41A1 transporters underlie a novel plasma membrane Mg(2+) transport function. Consistent with this conclusion, structure-function analyses of heterologous SLC41A1 transporter expression demonstrate that SLC41A1 transporters exhibit the same plasma membrane orientation as homologous bacterial MgtE proteins, are capable of complementing growth of TRPM7-deficient cells only when the Mg(2+) transporting pore is intact, and require an N-terminal cytoplasmic domain for Mg(2+)-dependent regulation of lysosomal degradation and surface expression. Taken together, our results indicate that SLC41A1 proteins are a central component of vertebrate Mg(2+) transport systems, and that their Mg(2+) transport function is regulated primarily through an endosomal recycling mechanism involving the SLC41A1 N-terminal cytoplasmic domain.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Endossomos/metabolismo , Magnésio/metabolismo , Animais , Western Blotting , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Galinhas , Eletroforese em Gel de Poliacrilamida , Humanos , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico
13.
Cell Cycle ; 9(17): 3565-74, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20724843

RESUMO

A unique property of lymphocytes among all body tissues is their capacity for rapid proliferation in the context of responding to infectious challenges. Lymphocyte proliferation involves a transition from a quiescent metabolic state adjusted to maintain cellular energy homeostasis, to a proliferative metabolic state in which aerobic glycolysis is used to generate energy and biosynthetic precursors necessary for the accumulation of cell mass. Here we show that modulation of TRPM7 channel function in tumor B-lymphocytes directly induces quiescent/proliferative metabolic transitions. As TRPM7 is widely expressed outside of the immune system, our results suggest that TRPM7 may play an active role in regulating metabolic transitions associated with rapid cellular proliferation and malignancy.


Assuntos
Linfócitos B/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Antibacterianos/farmacologia , Cálcio/metabolismo , Proliferação de Células , Galinhas , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Doxiciclina/farmacologia , Glicólise , Potencial da Membrana Mitocondrial/fisiologia , Consumo de Oxigênio , Canais de Cátion TRPM/genética
14.
Cell Metab ; 8(1): 84-93, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18590694

RESUMO

Lymphocytes lacking the TRPM7 (transient receptor potential cation channel, subfamily M, member 7) dual function ion channel/protein kinase exhibit a unique phenotype: they are unable to proliferate in regular media, but proliferate normally in media supplemented with 10-15 mM extracellular Mg(2+). Here, we have analyzed the molecular mechanisms underlying this phenotype. We find that upon transition from proliferation-supporting Mg(2+)-supplemented media to regular media, TRPM7-deficient cells rapidly downregulate their rate of growth, resulting in a secondary arrest in proliferation. The downregulated growth rate of transitioning cells is associated with a deactivation of signaling downstream from phosphoinositide 3-kinase, and expression of constitutively active p110 phosphoinositide 3-kinase is sufficient to support growth and proliferation of TRPM7-deficient cells in regular media. Together, these observations indicate that TRPM7 channels are required for sustained phosphoinositide 3-kinase-dependent growth signaling and therefore, that TRPM7 is positioned alongside phosphoinositide 3-kinases as a central regulator of lymphocyte growth and proliferation.


Assuntos
Linfócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Canais de Cátion TRPM/fisiologia , Animais , Linhagem Celular , Proliferação de Células , Galinhas , Linfócitos/citologia , Magnésio
15.
Biochem J ; 401(2): 505-13, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16984228

RESUMO

The TRPM7 (transient receptor potential melastatin 7) ion channel has been implicated in the uptake of Mg2+ into vertebrate cells, as elimination of TRPM7 expression through gene targeting in DT40 B-lymphocytes renders them unable to grow in the absence of supplemental Mg2+. However, a residual capacity of TRPM7-deficient cells to accumulate Mg2+ and proliferate when provided with supplemental Mg2+ suggests the existence of Mg2+ uptake mechanism(s) other than TRPM7. Evaluation of the expression of several members of the SLC41 (solute carrier family 41) family, which exhibit homology with the MgtE class of prokaryotic putative bivalent-cation transporters, demonstrated that one, SLC41A2 (solute carrier family 41 member 2), is expressed in both wild-type and TRPM7-deficient DT40 cells. Characterization of heterologously expressed SLC41A2 protein indicated that it is a plasma-membrane protein with an N-terminus-outside/C-terminus-inside 11-TM (transmembrane)-span topology, consistent with its functioning as a trans-plasma-membrane transporter. In contrast with a previous report of ion-channel activity associated with SLC41A2 expression in oocytes, investigation of whole cell currents in SLC41A2-expressing DT40 cells revealed no novel currents of any type associated with SLC41A2 expression. However, expression of SLC41A2 in TRPM7-deficient cells under the control of a doxycycline-inducible promoter was able to conditionally enhance their net uptake of 26Mg2+ and conditionally and dose-dependently provide them with the capacity to grow in the absence of supplemental Mg2+, observations strongly supporting a model whereby SLC41A2 directly mediates trans-plasma-membrane Mg2+ transport. Overall, our results suggest that SLC41A2 functions as a plasma-membrane Mg2+ transporter in vertebrate cells.


Assuntos
Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Magnésio/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Animais , Linhagem Celular , Galinhas , Regulação da Expressão Gênica , Humanos , Proteínas Serina-Treonina Quinases , Canais de Cátion TRPM/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA