Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Environ ; 45(1): 17, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127630

RESUMO

Environmental heat stress in dairy cattle leads to poor health, reduced milk production and decreased reproductive efficiency. Multiple genes interact and coordinate the response to overcome the impact of heat stress. The present study identified heat shock regulated genes in the peripheral blood mononuclear cells (PBMC). Genome-wide expression patterns for cellular stress response were compared between two genetically distinct groups of cattle viz., Hariana (B. indicus) and Vrindavani (B. indicus X B. taurus). In addition to major heat shock response genes, oxidative stress and immune response genes were also found to be affected by heat stress. Heat shock proteins such as HSPH1, HSPB8, FKB4, DNAJ4 and SERPINH1 were up-regulated at higher fold change in Vrindavani compared to Hariana cattle. The oxidative stress response genes (HMOX1, BNIP3, RHOB and VEGFA) and immune response genes (FSOB, GADD45B and JUN) were up-regulated in Vrindavani whereas the same were down-regulated in Hariana cattle. The enrichment analysis of dysregulated genes revealed the biological functions and signaling pathways that were affected by heat stress. Overall, these results show distinct cellular responses to heat stress in two different genetic groups of cattle. This also highlight the long-term adaptation of B. indicus (Hariana) to tropical climate as compared to the crossbred (Vrindavani) with mixed genetic makeup (B. indicus X B. taurus).

2.
Vet Res Commun ; 46(4): 1011-1022, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36190601

RESUMO

Foot-and-mouth disease (FMD) is a major disease of livestock in India and causes huge economic losses. The formal FMD control program started in 2003-04 in selected districts and was gradually expanded. The present study provides a descriptive review of the FMD outbreaks, prevalent serotypes, and genetic and antigenic features of the FMD virus (FMDV) that circulated in the country between 2011 and 2020. FMD outbreaks were regularly reported in cloven-hoofed domestic livestock and wildlife, with three serotypes including O, A, and Asia1. During the study period, a total of 2226 FMD outbreaks were documented and serotypes confirmed. FMDV serotype O dominated the outbreak scenario, accounting for about 92% of all outbreaks, followed by Asia1 (5% of all outbreaks) and A (3% of all outbreaks). Two major epidemics of FMD on an unprecedented scale during the years 2013 and 2018 by serotype O were recorded. The spatial distribution of FMD was characterized by a larger number of outbreaks in the southern region of the country. In an annual-scale analysis, 2020 was the year with the lowest outbreaks, and 2013 was the year with the highest. The month-scale analysis showed that outbreaks were reported throughout the year, with the highest numbers between October and March. The emergence of three major lineages (O/ME-SA/Ind2001d, O/ME-SA/Ind2001e, and O/ME-SA/Ind2018) of serotype O was observed during the period. In the cases of serotype A and Asia1, the appearance of at least one novel lineage/genetic group, including A/G-18/non-deletion/2019 and Asia1/Group-IX, was documented. While serotype A showed the advent of antigenic variants, serotypes O and Asia1 did not show any antigenic diversity. It was noticed during the course of an outbreak that animal movement contributes significantly to disease transmission. Except for 2018, when numerous FMD outbreaks were recorded, the number of annual outbreaks reported after 2016 has been lower than in the first half of the decade, probably due to mass vaccination and COVID-19 pandemic-linked movement restrictions. Even during outbreaks, disease symptoms in ruminant populations, including cattle, were found to be less severe. Regular six-monthly immunization certainly has a positive impact on the reduction of disease burden and should be followed without fail and delay, along with intensive disease surveillance.


Assuntos
COVID-19 , Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Bovinos , Animais , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Pandemias , COVID-19/veterinária , Vírus da Febre Aftosa/genética , Surtos de Doenças/veterinária , Sorogrupo , Ruminantes , Filogenia
3.
Trop Anim Health Prod ; 53(4): 408, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34292411

RESUMO

The study aimed to explore the serum levels of HSP70 and identify its possible association with serum cortisol, thyroid hormones, and acute-phase protein concentrations in cattle naturally infected with foot-and-mouth disease (FMD) virus. After the FMD outbreak in an organized dairy cattle farm in India, blood samples were obtained from clinically infected (n = 40) and apparently healthy (n = 30) animals. Samples were processed and tested by an in-house DIVA assay for confirmation of FMD infection. Serum was analyzed for HSP70, cortisol, T4, T3, haptoglobin, and serum amyloid A by enzyme-linked immunosorbent assay (ELISA). HSP70 concentrations were significantly higher in the serum of clinically infected cattle (p < 0.01) than the healthy group. To the best of our knowledge, this is the first report describing the elevated serum levels of HSP70 under infectious diseases of bovines. Cortisol (p < 0.05), haptoglobin (p < 0.001), and serum amyloid A (p < 0.05) concentrations also markedly increased in the diseased animals; however, no differences (p > 0.05) were found in T4 and T3 levels between healthy and infected cattle. Elevated HSP70 concentration correlated positively with high cortisol (p < 0.05) and haptoglobin (p < 0.001) levels suggesting an essential link between these acute events during clinical infectious phase of FMD.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Proteínas de Fase Aguda , Animais , Anticorpos Antivirais , Bovinos , Ensaio de Imunoadsorção Enzimática/veterinária , Hidrocortisona , Índia , Hormônios Tireóideos
4.
Sci Rep ; 8(1): 15969, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374051

RESUMO

Identification of suitable candidate reference genes is an important prerequisite for validating the gene expression data obtained from downstream analysis of RNA sequencing using quantitative real time PCR (qRT-PCR). Though existence of a universal reference gene is myth, commonly used reference genes can be assessed for expression stability to confer their suitability to be used as candidate reference genes in gene expression studies. In this study, we evaluated the expression stability of ten most commonly used reference genes (GAPDH, ACTB, HSP90, HMBS, 18S rRNA, B2M, POLR2A, HPRT1, ACAC, YWHAZ) in fourteen different Peste des petits ruminants virus (PPRV) infected tissues of goats and sheep. RefFinder and RankAggreg software were used to deduce comprehensive ranking of reference genes. Our results suggested HMBS and B2M in goats and HMBS and HPRT1 in sheep can be used as suitable endogenous controls in gene expression studies of PPRV infection irrespective of tissues and condition as a whole, thus eliminating the use of tissue specific/ condition specific endogenous controls. We report for the first time suitable reference genes for gene expression studies in PPRV infected tissues. The reference genes determined here can be useful for future studies on gene expression in sheep and goat infected with PPRV, thus saving extra efforts and time of repeating the reference gene determination and validation.


Assuntos
Doenças das Cabras/patologia , Vírus da Peste dos Pequenos Ruminantes/fisiologia , Doenças dos Ovinos/patologia , Animais , Regulação da Expressão Gênica , Doenças das Cabras/genética , Doenças das Cabras/virologia , Cabras , Hidroximetilbilano Sintase/genética , Hipoxantina Fosforribosiltransferase/genética , Pulmão/metabolismo , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Ovinos , Doenças dos Ovinos/genética , Doenças dos Ovinos/virologia , Baço/metabolismo , Microglobulina beta-2/genética
5.
Microb Pathog ; 117: 206-218, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29476787

RESUMO

Here, we studied the in vivo expression of Th1 (IL2 and IFN gamma) and Th2 (IL4 and IL10) - cytokines and antiviral molecules - IRF3 and ISG15 in peripheral blood mononuclear cells in relation to antigen and antibody dynamics under Peste des petits ruminants virus (PPRV) vaccination, infection and challenge in both sheep and goats. Vaccinated goats were seropositive by 9 days post vaccination (dpv) while in sheep idiosyncratic response was observed between 9 and 14 dpv for different animals. Expression of PPRV N gene was not detected in PBMCs of vaccinated and vaccinated challenged groups of both species, but was detected in unvaccinated infected PBMCs at 9 and 14 days post infection. The higher viral load at 9 dpi coincided with the peak clinical signs of the disease. The peak in viral replication at 9 dpi correlated with significant expression of antiviral molecules IRF3, ISG15 and IFN gamma in both the species. With the progression of disease, the decrease in N gene expression also correlated with the decrease in expression of IRF3, ISG15 and IFN gamma. In the unvaccinated infected animals ISG15, IRF3, IFN gamma and IL10 expression was higher than vaccinated animals. The IFN gamma expression predominated over IL4 in both vaccinated and infected animals with the infected exhibiting a stronger Th1 response. The persistent upregulation of this antiviral molecular signature - ISG15 and IRF3 even after 2 weeks post vaccination, presumably reflects the ongoing stimulation of innate immune cells.


Assuntos
Citocinas/biossíntese , Regulação da Expressão Gênica/imunologia , Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/imunologia , Tropismo/imunologia , Vacinação/veterinária , Vacinas Virais/imunologia , Eliminação de Partículas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/sangue , Antivirais/farmacologia , Citocinas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Genes Virais/genética , Doenças das Cabras/imunologia , Doenças das Cabras/prevenção & controle , Doenças das Cabras/virologia , Cabras , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Fator Regulador 3 de Interferon/biossíntese , Fator Regulador 3 de Interferon/genética , Interferon gama/biossíntese , Interferon gama/genética , Interleucina-10/biossíntese , Interleucina-10/genética , Interleucina-2/biossíntese , Interleucina-2/genética , Interleucina-4/biossíntese , Interleucina-4/genética , Cinética , Leucócitos Mononucleares/imunologia , Peste dos Pequenos Ruminantes/patologia , Peste dos Pequenos Ruminantes/prevenção & controle , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/patogenicidade , Ruminantes/imunologia , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/virologia , Fatores de Tempo , Vacinas Atenuadas/imunologia , Carga Viral , Replicação Viral
6.
Arch Virol ; 162(6): 1677-1693, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28247095

RESUMO

Peste des petits ruminants is an important transboundary disease infecting small ruminants. Genome or gene sequence analysis enriches our knowledge about the evolution and transboundary nature of the causative agent of this disease, peste des petits ruminants virus (PPRV). Although analysis using whole genome sequences of pathogens leads to more precise phylogenetic relationships, when compared to individual genes or partial sequences, there is still a need to identify specific genes/genomic regions that can provide evolutionary assessments consistent with those predicted with full-length genome sequences. Here the virulent Izatnagar/94 PPRV isolate was assembled and compared to all available complete genome sequences (currently in the NCBI database) to estimate nucleotide diversity and to deduce evolutionary relationships between genes/genomic regions and the full length genomes. Our aim was to identify the preferred candidate gene for use as a phylogenetic marker, as well as to predict divergence time and explore PPRV phylogeography. Among all the PPRV genes, the H gene was identified to be the most diverse with the highest evolutionary relationship with the full genome sequences. Hence it is considered as the most preferred candidate gene for phylogenetic study with 93% identity set as a nucleotide cutoff. A whole genome nucleotide sequence cutoff value of 94% permitted specific differentiation of PPRV lineages. All the isolates examined in the study were found to have a most recent common ancestor in the late 19th or in the early 20th century with high posterior probability values. The Bayesian skyline plot revealed a decrease in genetic diversity among lineage IV isolates since the start of the vaccination program and the network analysis localized the ancestry of PPRV to Africa.


Assuntos
Genoma Viral , Doenças das Cabras/virologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Doenças dos Ovinos/virologia , Animais , Evolução Molecular , Cabras , Índia , Vírus da Peste dos Pequenos Ruminantes/classificação , Filogenia , Filogeografia , Ovinos
7.
Infect Genet Evol ; 47: 9-18, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27840256

RESUMO

Bovine tropical theileriosis is an important haemoprotozoan disease associated with high rates of morbidity and mortality particularly in exotic and crossbred cattle. It is one of the major constraints of the livestock development programmes in India and Southeast Asia. Indigenous cattle (Bos indicus) are reported to be comparatively less affected than exotic and crossbred cattle. However, genetic basis of resistance to tropical theileriosis in indigenous cattle is not well documented. Recent studies incited an idea that differentially expressed genes in exotic and indigenous cattle play significant role in breed specific resistance to tropical theileriosis. The present study was designed to determine the global gene expression profile in peripheral blood mononuclear cells derived from indigenous (Tharparkar) and cross-bred cattle following in vitro infection of T. annulata (Parbhani strain). Two separate microarray experiments were carried out each for cross-bred and Tharparkar cattle. The cross-bred cattle showed 1082 differentially expressed genes (DEGs). Out of total DEGs, 597 genes were down-regulated and 485 were up-regulated. Their fold change varied from 2283.93 to -4816.02. Tharparkar cattle showed 875 differentially expressed genes including 451 down-regulated and 424 up-regulated. The fold change varied from 94.93 to -19.20. A subset of genes was validated by qRT-PCR and results were correlated well with microarray data indicating that microarray results provided an accurate report of transcript level. Functional annotation study of DEGs confirmed their involvement in various pathways including response to oxidative stress, immune system regulation, cell proliferation, cytoskeletal changes, kinases activity and apoptosis. Gene network analysis of these DEGs plays an important role to understand the interaction among genes. It is therefore, hypothesized that the different susceptibility to tropical theileriosis exhibited by indigenous and crossbred cattle is due to breed-specific differences in the dealing of infected cells with other immune cells, which ultimately influence the immune response responded against T. annulata infection.


Assuntos
Bovinos , Predisposição Genética para Doença/genética , Leucócitos Mononucleares , Theileria annulata/imunologia , Theileriose , Transcriptoma , Animais , Bovinos/genética , Bovinos/imunologia , Perfilação da Expressão Gênica , Hibridização Genética/genética , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/imunologia , Theileriose/genética , Theileriose/imunologia , Transcriptoma/genética , Transcriptoma/imunologia
8.
Virus Res ; 229: 28-40, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28017736

RESUMO

Peste des petits ruminanats virus (PPRV), a morbillivirus causes an acute, highly contagious disease - peste des petits ruminants (PPR), affecting goats and sheep. Sungri/96 vaccine strain is widely used for mass vaccination programs in India against PPR and is considered the most potent vaccine providing long-term immunity. However, occurrence of outbreaks due to emerging PPR viruses may be a challenge. In this study, the temporal dynamics of immune response in goat peripheral blood mononuclear cells (PBMCs) infected with Sungri/96 vaccine virus was investigated by transcriptome analysis. Infected goat PBMCs at 48h and 120h post infection revealed 2540 and 2000 differentially expressed genes (DEGs), respectively, on comparison with respective controls. Comparison of the infected samples revealed 1416 DEGs to be altered across time points. Functional analysis of DEGs reflected enrichment of TLR signaling pathways, innate immune response, inflammatory response, positive regulation of signal transduction and cytokine production. The upregulation of innate immune genes during early phase (between 2-5 days) viz. interferon regulatory factors (IRFs), tripartite motifs (TRIM) and several interferon stimulated genes (ISGs) in infected PBMCs and interactome analysis indicated induction of broad-spectrum anti-viral state. Several Transcription factors - IRF3, FOXO3 and SP1 that govern immune regulatory pathways were identified to co-regulate the DEGs. The results from this study, highlighted the involvement of both innate and adaptive immune systems with the enrichment of complement cascade observed at 120h p.i., suggestive of a link between innate and adaptive immune response. Based on the transcriptome analysis and qRT-PCR validation, an in vitro mechanism for the induction of ISGs by IRFs in an interferon independent manner to trigger a robust immune response was predicted in PPRV infection.


Assuntos
Anticorpos Antivirais/biossíntese , Doenças das Cabras/prevenção & controle , Peste dos Pequenos Ruminantes/prevenção & controle , Vírus da Peste dos Pequenos Ruminantes/efeitos dos fármacos , Transcriptoma/imunologia , Vacinação/veterinária , Imunidade Adaptativa/efeitos dos fármacos , Animais , Chlorocebus aethiops , Citocinas/genética , Citocinas/imunologia , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Doenças das Cabras/imunologia , Doenças das Cabras/virologia , Cabras , Imunidade Inata/efeitos dos fármacos , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Peste dos Pequenos Ruminantes/imunologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/imunologia , Transdução de Sinais , Células Vero , Vacinas Virais/administração & dosagem
9.
Genom Data ; 11: 62-72, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28003963

RESUMO

Bluetongue is an economically important infectious, arthropod borne viral disease of domestic and wild ruminants, caused by Bluetongue virus (BTV). Sheep are considered the most susceptible hosts, while cattle, buffalo and goats serve as reservoirs. The viral pathogenesis of BTV resulting in presence or absence of clinical disease among different hosts is not clearly understood. In the present study, transcriptome of sheep and goats peripheral blood mononuclear cells infected with BTV-16 was explored. The differentially expressed genes (DEGs) identified were found to be significantly enriched for immune system processes - NFκB signaling, MAPK signaling, Ras signaling, NOD signaling, RIG signaling, TNF signaling, TLR signaling, JAK-STAT signaling and VEGF signaling pathways. Greater numbers of DEGs were found to be involved in immune system processes in goats than in sheep. Interestingly, the DEHC (differentially expressed highly connected) gene network was found to be dense in goats than in sheep. Majority of the DEHC genes in the network were upregulated in goats but down-regulated in sheep. The network of differentially expressed immune genes with the other genes further confirmed these findings. Interferon stimulated genes - IFIT1 (ISG56), IFIT2 (ISG54) and IFIT3 (ISG60) responsible for antiviral state in the host were found to be upregulated in both the species. STAT2 was the TF commonly identified to co-regulate the DEGs, with its network showing genes that are downregulated in sheep but upregulated in goats. The genes dysregulated and the networks perturbed in the present study indicate host variability with a positive shift in immune response to BTV in goats than in sheep.

10.
Virus Res ; 213: 46-61, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26555166

RESUMO

The non-structural protein (NS1) of parvoviruses plays an important role in viral replication and is thought to be responsible for inducing cell death. However, the detailed mechanism and the pathways involved in canine parvovirus type 2 NS1 (CPV2.NS1) induced apoptosis are not yet known. In the present study, we report that expression of CPV2.NS1 in HeLa cells arrests cells in G1 phase of the cell cycle and the apoptosis is mitochondria mediated as indicated by mitochondrial depolarization, release of cytochrome-c and activation of caspase 9. Treatment of cells with caspase 9 inhibitor Z-LEHD-FMK reduced the induction of apoptosis significantly. We also report that expression of CPV2.NS1 causes accumulation of reactive oxygen species (ROS) and treatment with an antioxidant reduces the ROS levels and the extent of apoptosis. Our results provide an insight into the mechanism of CPV2.NS1 induced apoptosis, which might prove valuable in developing NS1 protein as an oncolytic agent.


Assuntos
Apoptose , Caspase 9/metabolismo , Mitocôndrias/metabolismo , Parvovirus Canino/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Proteínas não Estruturais Virais/metabolismo , Pontos de Checagem do Ciclo Celular , Células HeLa , Humanos
11.
Gene Rep ; 5: 23-29, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32289096

RESUMO

Systems biology is an interdisciplinary research field in life sciences, which involves a comprehensive and quantitative analysis of the interactions between all of the components of biological systems over time. For the past 50 years the discipline of virology has overly focused on the pathogen itself. However, we now know that the host response is equally or more important in defining the eventual pathological outcome of infection. Systems biology has in recent years been increasingly recognised for its importance to infectious disease research. Host-virus interactions can be better understood by taking into account the dynamical molecular networks that constitute a biological system. To decipher the pathobiological mechanisms of any disease requires a deep knowledge of how multiple and concurrent signal-transduction pathways operate and are deregulated. Hence the intricacies of signalling pathways can be dissected only by system level approaches.

12.
Vet Res ; 46: 15, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25827022

RESUMO

Peste des petits ruminants (PPR), is an acute transboundary viral disease of economic importance, affecting goats and sheep. Mass vaccination programs around the world resulted in the decline of PPR outbreaks. Sungri 96 is a live attenuated vaccine, widely used in Northern India against PPR. This vaccine virus, isolated from goat works efficiently both in sheep and goat. Global gene expression changes under PPR vaccine virus infection are not yet well defined. Therefore, in this study we investigated the host-vaccine virus interactions by infecting the peripheral blood mononuclear cells isolated from goat with PPRV (Sungri 96 vaccine virus), to quantify the global changes in the transcriptomic signature by RNA-sequencing. Viral genome of Sungri 96 vaccine virus was assembled from the PPRV infected transcriptome confirming the infection and demonstrating the feasibility of building a complete non-host genome from the blood transcriptome. Comparison of infected transcriptome with control transcriptome revealed 985 differentially expressed genes. Functional analysis showed enrichment of immune regulatory pathways under PPRV infection. Key genes involved in immune system regulation, spliceosomal and apoptotic pathways were identified to be dysregulated. Network analysis revealed that the protein - protein interaction network among differentially expressed genes is significantly disrupted in infected state. Several genes encoding TFs that govern immune regulatory pathways were identified to co-regulate the differentially expressed genes. These data provide insights into the host - PPRV vaccine virus interactome for the first time. Our findings suggested dysregulation of immune regulatory pathways and genes encoding Transcription Factors (TFs) that govern these pathways in response to viral infection.


Assuntos
Genoma Viral , Doenças das Cabras/imunologia , Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/imunologia , Fatores de Transcrição , Vacinas Virais/imunologia , Animais , Doenças das Cabras/virologia , Cabras , Índia , Leucócitos Mononucleares/virologia , Dados de Sequência Molecular , Motivos de Nucleotídeos , Peste dos Pequenos Ruminantes/virologia , Transcriptoma , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética
13.
Appl Biochem Biotechnol ; 176(1): 196-212, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25809990

RESUMO

The use of viruses for treatment of cancer overcomes the bottlenecks of chemotherapy and radiotherapy. Several viruses and their proteins have been evaluated for oncolytic effect. The VP3 protein (apoptin) of chicken anemia virus is one such protein with an inherent ability to lyse cancer and transformed cells while leaving normal cells unharmed. In the present study, the apoptosis inducing potential of VP3 protein of CAV was evaluated in human cervical cancer cell line (HeLa). It was found that in VP3-induced apoptosis, caspase-dependent intrinsic pathway plays an important role with the cleavage of poly (ADP-ribose) polymerase (PARP) and there was no evidence of involvement of death receptor-mediated extrinsic pathway. The results of this study provide intuitive information and strengthen the candidacy of apoptin as a viral oncotherapeutic agent.


Assuntos
Apoptose , Proteínas do Capsídeo/biossíntese , Vírus da Anemia da Galinha/metabolismo , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/metabolismo , Proteínas do Capsídeo/genética , Vírus da Anemia da Galinha/genética , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Vírus Oncolíticos/genética
14.
Res Vet Sci ; 97(2): 292-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25135490

RESUMO

The Non-Structural protein 1 of Canine Parvovirus-2 (CPV2.NS1) plays a major role in viral cytotoxicity and pathogenicity. CPV2.NS1 has been proven to cause apoptosis in HeLa cells in vitro in our laboratory. Here we report that CPV2.NS1 has no toxic side effects on healthy cells but regresses skin tumors in Wistar rats. Histopathological examination of tumor tissue from CPV2.NS1 treated group revealed infiltration of mononuclear and polymorphonuclear cells with increased extra cellular matrix, indicating signs of regression. Tumor regression was also evidenced by significant decrease in mitotic index, AgNOR count and PCNA index, and increase in TUNEL positive apoptotic cells in CPV2.NS1 treated group. Further, CPV2.NS1 induced anti-tumor immune response through significant increase in CD8(+) and NK cell population in CPV2.NS1 treated group. These findings suggest that CPV2.NS1 can be a possible therapeutic candidate as an alternative to chemotherapy for the treatment of cancer.


Assuntos
Carcinoma de Células Escamosas/veterinária , Doenças do Cão/terapia , Terapia Genética/métodos , Parvovirus Canino/genética , Neoplasias Cutâneas/veterinária , Proteínas não Estruturais Virais/genética , 9,10-Dimetil-1,2-benzantraceno/efeitos adversos , Animais , Apoptose , Carcinógenos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Modelos Animais de Doenças , Doenças do Cão/induzido quimicamente , Doenças do Cão/patologia , Cães , Masculino , Índice Mitótico , Ratos , Ratos Wistar , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Resultado do Tratamento
15.
Appl Biochem Biotechnol ; 172(1): 497-508, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24092455

RESUMO

The canine parvovirus type 2 (CPV-2) causes an acute disease in dogs. It has been found to induce cell cycle arrest and DNA damage leading to cellular lysis. In this paper, we evaluated the apoptotic potential of the "new CPV-2a" in MDCK cells and elucidated the mechanism of the induction of apoptosis. The exposure of MDCK cells to the virus was found to trigger apoptotic response. Apoptosis was confirmed by phosphatidylserine translocation, DNA fragmentation assays, and cell cycle analysis. Activation of caspases-3, -8, -9, and -12 and decrease in mitochondrial potential in CPV-2a-infected MDCK cells suggested that the CPV-2a-induced apoptosis is caspase dependent involving extrinsic, intrinsic, and endoplasmic reticulum pathways. Increase in p53 and Bax/Bcl2 ratio was also observed in CPV-2a-infected cells.


Assuntos
Apoptose , Caspases/metabolismo , Parvovirus Canino/fisiologia , Transdução de Sinais , Animais , Transporte Biológico , Membrana Celular/metabolismo , Diploide , Cães , Retículo Endoplasmático/metabolismo , Células Madin Darby de Rim Canino , Nucleossomos/metabolismo , Fosfatidilserinas/metabolismo , Proteína Supressora de Tumor p53/metabolismo
16.
Virus Res ; 173(2): 426-30, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23416147

RESUMO

Apoptosis is programmed cell death that normally occurs during development and aging in multicellular animals. Apoptosis also occurs as a defense mechanism against disease or harmful external agents. It can be initiated by a variety of stimuli including viruses and viral proteins. Canine parvovirus type 2 (CPV-2) that causes acute disease in dogs has been found to induce cell cycle arrest and DNA damage leading to cellular lysis. Though non structural protein 1 (NS1) of many parvoviruses has been found to be apoptotic, no report on the apoptotic potential of NS1 of CPV-2 (CPV-2.NS1) exists. In this study, we evaluated the apoptotic potential of CPV-2.NS1 in HeLa cells. CPV-2.NS1 has been found to induce apoptosis which was evident through characteristic DNA fragmentation, increase in hypodiploid cell count, phosphatidyl serine translocation and activation of caspase-3. Increase in caspase-3 activity and no change in p53 activity with time in CPV-2.NS1 expressing HeLa cells showed the induction of apoptosis to be caspase dependent and p53 independent.


Assuntos
Apoptose , Caspase 3/metabolismo , Parvovirus Canino/patogenicidade , Proteína Supressora de Tumor p53/metabolismo , Proteínas não Estruturais Virais/metabolismo , Fatores de Virulência/metabolismo , Fragmentação do DNA , Células Epiteliais/fisiologia , Células Epiteliais/virologia , Células HeLa , Humanos , Fosfatidilserinas/análise
17.
Indian J Exp Biol ; 50(9): 618-24, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23140019

RESUMO

The canine Parvovirus 2, non-structural 1 (NS1) is a novel candidate tumor suppressor gene. To confirm the expression of the NS1 in HeLa cells after transfection there was a need to raise antiserum against CPV2- NS1. Therefore, this study was carried out to express and purify the recombinant NS1 (rNS1), and characterize the polyclonal serum. CPV2-NS1, complete coding sequence (CDS) was amplified, cloned in pET32a+ and expressed in BL21 (DE3) (pLysS). SDS-PAGE analysis revealed that the expression of the recombinant protein was maximum when induced with 1.5 mM IPTG. The 6 x His tagged fusion protein was purified on Ni-NTA resin under denaturing conditions and confirmed by western blot using CPV2 specific antiserum. The rabbits were immunized with the purified rNS1 to raise anti-NS1 polyclonal antiserum. The polyclonal serum was tested for specificity and used for confirming the expression of NS1 in HeLa transfected with pcDNA.cpv2.ns1 by indirect fluorescent antibody test (IFAT), flow cytometry and western blot. The polyclonal antiserum against NS1 could be very useful to establish functional in vitro assays to explore role of NS1 in cancer therapeutics.


Assuntos
Expressão Gênica/imunologia , Soros Imunes , Parvovirus Canino/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Anticorpos/imunologia , Antígenos/imunologia , Cães , Escherichia coli , Células HeLa , Humanos , Técnicas In Vitro , Parvovirus Canino/imunologia , Coelhos , Proteínas Recombinantes/imunologia , Proteínas não Estruturais Virais/imunologia
18.
Indian J Exp Biol ; 50(5): 325-31, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22803322

RESUMO

In the present study recombinant VP3 (rVP3) was expressed in E. coli BL21 (DE3) (pLysS) and its polyclonal antibodies were characterized. SDS-PAGE analysis revealed that the expression of recombinant protein was maximum when induced with 1.5 mM IPTG for 6 h at 37 degrees C. The 6xHis-tagged fusion protein was purified on Ni-NTA and confirmed by Western blot using CAV specific antiserum. Rabbits were immunized with purified rVP3 to raise anti-VP3 polyclonal antibodies. Polyclonal serum was tested for specificity and used for confirming expression of VP3 in HeLa cells transfected with pcDNA.cav.vp3 by indirect fluorescent antibody test (IFAT), flow cytometry and Western blot. Available purified rVP3 and polyclonal antibodies against VP3 may be useful to understand its functions which may lead to application of VP3 in cancer therapeutics.


Assuntos
Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Proteínas do Capsídeo/imunologia , Vírus da Anemia da Galinha/genética , Animais , Anticorpos/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/isolamento & purificação , Vírus da Anemia da Galinha/imunologia , Galinhas/virologia , Clonagem Molecular , Escherichia coli , Expressão Gênica/genética , Vetores Genéticos , Células HeLa , Humanos , Terapia Viral Oncolítica , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA