Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(28): 18910-18915, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38973781

RESUMO

The cogwheel mechanism of helical self-organization, reported by us, generates columns with the alkyl chains of their components parallel to the column axis. This mechanism disregards the enantiomeric purity of constituents and, under suitable design, provides the fastest rate of helical self-organization. Here, we investigate the supramolecular structure of a thermodynamically controlled helical self-organization system. Unexpectedly, we found that this system follows a cogwheel mechanism of helical self-organization that does not contain the two key parameters of the cogwheel mechanism: the length of the alkyl group of the self-assembling dendron identical to the helical half-pitch (hhp) of the column and the presence of chiral branches pointing toward the column center. Unpredictably, we uncovered that the presence of chiral branching points and strict alkyl chain lengths is not a requirement of the cogwheel mechanism. A self-repairing process provides access to a constant hhp via a shorter and longer alkyl chain length than the originally exact demanded value, which together with the lack of branching point(s) demonstrates the universality of the cogwheel mechanism of helical self-organization. Applications derived from this concept are envisioned.

2.
J Am Chem Soc ; 146(6): 3627-3634, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306714

RESUMO

Constitutional isomerism has been previously demonstrated by one of our laboratories to represent a powerful design strategy for the elaboration of complex functional self-organizations. Here we report the design, synthesis, and characterization of 14 positional, skeletal, and functional constitutional isomeric one-component, multifunctional, sequence-defined, amphiphilic ionizable Janus dendrimers (IAJDs). Their coassembly by simple injection with luciferase mRNA (Luc-mRNA) to form dendrimersome nanoparticles (DNPs) was studied. Subsequently, the resulting DNPs were employed to investigate, with screening experiments, the delivery of Luc-mRNA in vivo. Constitutional isomerism was shown to produce changes of up to two orders of magnitude of the total-body luciferase activity and targeted luciferase activity to the spleen and liver, of up to three orders of magnitude difference in targeted luciferase activity to the lungs and up to six orders of magnitude to lymph nodes. These results indicate that constitutional isomerism may represent not only a simple but also an important synthetic strategy that most probably may impact the activity of all components of synthetic vectors used in RNA-based nanomedicine, including in mRNA vaccines and therapeutics.


Assuntos
Dendrímeros , Nanopartículas , Isomerismo , Dendrímeros/química , RNA Mensageiro/genética , Luciferases
3.
Biomacromolecules ; 25(3): 1353-1370, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38232372

RESUMO

This Perspective is dedicated to the 25th Anniversary of Biomacromolecules. It provides a personal view on the developing field of the polymer and biology interface over the 25 years since the journal was launched by the American Chemical Society (ACS). This Perspective is meant to bridge an article published in the first issue of the journal and recent bioinspired developments in the laboratory of the corresponding author. The discovery of supramolecular spherical helices self-organizing into Frank-Kasper and quasicrystals as models of icosahedral viruses, as well as of columnar helical assemblies that mimic rodlike viruses by supramolecular dendrimers, is briefly presented. The transplant of these assemblies from supramolecular dendrimers to block copolymers, giant surfactants, and other self-organized soft matter follows. Amphiphilic self-assembling Janus dendrimers and glycodendrimers as mimics of biological membranes and their glycans are discussed. New concepts derived from them that evolved in the in vivo targeted delivery of mRNA with the simplest one-component synthetic vector systems are introduced. Some synthetic methodologies employed during the synthesis and self-assembly are explained. Unraveling bioinspired applications of novel materials concludes this brief 25th Anniversary Perspective of Biomacromolecules.


Assuntos
Dendrímeros , Dendrímeros/química , RNA Mensageiro , Polissacarídeos , Polímeros , Membrana Celular/química
4.
Inorg Chem ; 62(51): 20948-20960, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38053248

RESUMO

Energy is the center of importance for the survivability of civilization. Use of fossil fuel is going to be suspended, and renewable energy is technologically costlier. In the quest for new energy sources and to minimize fuel expenditure, the design of energy efficient devices is one of the solutions. Toward this objective, highly delocalized π-acidic N-hetreocycle pyrazine bridged Cd(II)-based coordination polymers (CPs), [Cd(tppz)(adc)(MeOH)] (1), [Cd(tppz)(trep)] (2), and [Cd(tppz)(2,6-ndc)] (3; tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) are synthesized in combination with π-accessible dicarboxylato linkers (acetylene dicarboxylic acid (H2adc), terephthalic acid (H2trep), and 2,6-naphthalene dicarboxylic acid (2,6 H2ndc)). The structures of the compounds, 1-3, have been confirmed by single-crystal X-ray diffraction measurements. Analysis of electrical property demonstrates that light irradiation enhances the conductivity and follows the order 3 > 2 > 1; compound 3 possesses the highest conductivity (1.93 × 10-3 (light), 1.12 × 10-4 S m-1 dark)), than 2 (1.80 × 10-4 (light), 1.10 × 10-4 S m-1 (dark)) and 1 (5.06 × 10-5 (light), 4.72 × 10-5 S m-1 (dark)). This light-induced electrical conductivity can pave the way toward fabrication of an active electronic device by using the discussed materials.

5.
J Am Chem Soc ; 145(34): 18760-18766, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37606244

RESUMO

Delivery of nucleic acids with viral and synthetic vectors has pioneered genetic nanomedicine. Four-component lipid nanoparticles (LNPs) consisting of ionizable lipids, phospholipids, cholesterol, and PEG-conjugated lipids, assembled by microfluidic or T-tube, are the benchmark synthetic vector for delivery of mRNA. One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery systems for mRNA were developed by us to complement LNPs. IAJDs consist of multifunctional hydrophilic low-generation dendrons or minidendrons conjugated to hydrophobic dendrons. They were inspired by amphiphilic Janus dendrimers and glycodendrimers. IAJDs coassemble with mRNA into predictable-size vesicles, named dendrimersome nanoparticles (DNPs), by simple injection in acetate buffer, rather than by the complex technology required by LNPs. Assembly of DNPs by simple injection together with sequence design in the hydrophilic and hydrophobic modules of IAJDs endowed rapid screening to access discovery. Molecular design principles for targeted delivery were elaborated when the branching points of IAJDs were constructed from symmetrically and nonsymmetrically substituted plant phenolic acids interconnected by pentaerythritol (PE). Here, we report the first library containing simplified IAJDs constructed in only three steps from symmetrically trialkylated PE in the hydrophobic domain and four different piperazine-based ionizable amines in the hydrophilic part. Rapid coassembly with mRNA and in vivo screening led to the discovery of the two most active IAJDs targeting the spleen, liver, and lymph nodes, one predominantly to the spleen and liver and six delivering equally to the spleen, liver, lung, and lymph nodes. These IAJDs represent the simplest synthetic vectors and the first viral or synthetic system delivering equally to multiple organs.


Assuntos
Dendrímeros , RNA Mensageiro/genética , Fígado , Lipídeos
6.
Inorg Chem ; 62(30): 11976-11989, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37467437

RESUMO

Photoluminescence activity of coordination polymers (CPs) has evoked intricate applications in the field of materials science, especially sensing of ions/molecules. In the present study, 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz) and 5-aminoisophthalate (HAIPA-) coordinated to Cd(II) to architect a coordination polymer, {[Cd(HAIPA)(tppz)(OH)]·3H2O}n (CP1) which unveils blue emission in an aqueous acetonitrile (98% aqueous) suspension. The emission is selectively quenched by Pd2+ only without interference in the presence of as many as 16 other cations. The structure of CP1 shows the presence of a free -COOH group, and the interlayer (-CO)O(2)···O(7) (OC-) distance, 4.242 Å, along with the π···π interactions (3.990, 3.927 Å), may make a cavity which suitably accommodates only Pd2+ (van der Waal's radius, 1.7 Å) through the Pd(II)-carboxylato (-COO-Pd) coordination. The stability of the composite, [CP1 + Pd2+] may be assessed from the fluorescence quenching experiment, and the Stern-Volmer constant (KSV) is 7.2 × 104 M-1. Therefore, the compound, CP1, is a promising sensor for Pd(II) in a selective manner with limit of detection (LOD), 0.08 µM. The XPS spectra of CP1 and [CP1 + Pd2+] have proven the presence of Pd2+ in the host and the existence of a coordinated -COO-Pd bond. Interestingly, inclusion of Pd2+ in CP1 decreases the band gap from 3.61 eV (CP1) to 3.05 eV ([CP1 + Pd2+]) which lies in the semiconducting region and has exhibited improved electrical conductivity from 7.42 × 10-5 (CP1) to 1.20 × 10-4 S m-1 ([CP1 + Pd2+]). Upon light irradiation, the electrical conductivities are enhanced to 1.45 × 10-4 S m-1 (CP1) and 3.81 × 10-4 S m-1 ([CP1 + Pd2+]); which validates the highly desired photoresponsive device applications. Therefore, such type of materials may serve as SDG-army (sustainable development goal) to battle against the environmental issues and energy crisis.

7.
Pharmaceutics ; 15(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37376020

RESUMO

Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics.

8.
Dalton Trans ; 52(26): 8904-8917, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37337883

RESUMO

A family of five- and six-coordinated Fe-porphyrins which enable us to scrutinize the effects of non-covalent interactions on the out-of-plane displacement of iron and its spin-states and axial ligand orientation in a single distorted macrocyclic environment has been reported. Combined analysis using single-crystal X-ray structure determination and EPR spectral investigation revealed the stabilization of the high-spin state of iron in the five-coordinate complex FeIII(TPPBr8)(OCHMe2), while six-coordinate complexes [FeIII(TPPBr8)(MeOH)2]ClO4, [FeIII(TPPBr8)(H2O)2]ClO4 and [FeIII(TPPBr8)(1-MeIm)2]ClO4 stabilize admixed-high, admixed-intermediate and low-spin states, respectively. The H-bonding interactions between the weak axial H2O/MeOH and perchlorate anion resulted in an elongation of the Fe-O bond which eventually shortened the Fe-N(por) distances leading to the stabilization of the admixed spin state of iron which, otherwise, stabilizes the high-spin (S = 5/2) state only. In addition, the iron atom in [FeIII(TPPBr8)(H2O)2]ClO4 is displaced by 0.02 Å towards one of the water molecules engaged in the H-bonding interactions leading to two different Fe-O (H2O) distances of 2.098(8) and 2.122(9) Å. In contrast, iron in [FeIII(TPPBr8)(MeOH)2]ClO4 sits on the plane of the porphyrin since both the axial methanol units are engaged in similar H-bonding interactions with the ClO4- ion. Moreover, the X-ray structure of low-spin FeII(TPPBr8)(1-MeIm)2 revealed a dihedral angle of 63.0° between two imidazoles which deviates largely from the expected angle of 90° (perpendicular orientations) since the axial imidazole protons are engaged in strong intermolecular C-H⋯π interactions which thereby restrict the axial ligand movement. The complex also displays the shortest Fe-N(1-MeIm) bond along with smallest dihedral angles of 7.8° and 22.4° between the axial imidazole ring and the closest Fe-Np axis due to strong π-interactions between iron and the axial imidazole ligand. Our work highlights the influence of non-covalent interactions on the out-of-plane displacement and spin state of iron and axial ligand orientations which are indeed important steps in the functioning of various hemoproteins.

9.
Polymers (Basel) ; 15(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37111979

RESUMO

All activities of our daily life, of the nature surrounding us and of the entire society and its complex economic and political systems are affected by stimuli. Therefore, understanding stimuli-responsive principles in nature, biology, society, and in complex synthetic systems is fundamental to natural and life sciences. This invited Perspective attempts to organize, to the best of our knowledge, for the first time the stimuli-responsive principles of supramolecular organizations emerging from self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers. Definitions of stimulus and stimuli from different fields of science are first discussed. Subsequently, we decided that supramolecular organizations of self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers may fit best in the definition of stimuli from biology. After a brief historical introduction to the discovery and development of conventional and self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers, a classification of stimuli-responsible principles as internal- and external-stimuli was made. Due to the enormous amount of literature on conventional dendrons, dendrimers, and dendronized polymers as well as on their self-assembling and self-organizable systems we decided to discuss stimuli-responsive principles only with examples from our laboratory. We apologize to all contributors to dendrimers and to the readers of this Perspective for this space-limited decision. Even after this decision, restrictions to a limited number of examples were required. In spite of this, we expect that this Perspective will provide a new way of thinking about stimuli in all fields of self-organized complex soft matter.

10.
Inorg Chem ; 61(49): 19790-19799, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36446631

RESUMO

The coordination polymer, (Zn(II)-CP, 1), {[Zn(2,6-NDC)(4-Cltpy)](H2O)4} (1) (2,6-H2NDC = 2,6-naphthalene dicarboxylic acid and 4-Cltpy = 4'-chloro-[2,2';6',2″]terpyridine) is structurally characterized by single crystal X-ray diffraction measurement and other physicochemical studies (PXRD, FTIR, thermal analysis, microanalytical data). 4-Cltpy acts as end-capping ligand, and NDC2- is a carboxylato bridging motif to constitute ZnN3O2 distorted trigonal bipyramid core that propagates to construct 1D chain. The coordination polymer, 1, detects total iron (Fe3+ and Fe2+) in aqueous solution by visual color change, colorless to pink. Absorption spectrophotometric technique in aqueous medium measures the limit of detection (LOD) 0.11 µM (Fe2+) and 0.15 µM (Fe3+), and binding constants (Kd) are 6.7 × 104 M-1 (Fe3+) and 3.33 × 104 M-1 (Fe2+). Biocompatibility of 1 is examined in live cells, and intracellular Fe2+ and Fe3+ are detected in MDA-MB 231 cells. Zn(II) substitution is assumed upon addition of FeIII/FeII solution to the suspension of the coordination polymer, 1, in water-acetonitrile (41:1) (LZnII + FeIII/II → LFeIII + ZnII, where L is defined as coordinated ligands), which is accompanied by changing from colorless to pink at room temperature. The color of the mixture may be assumed to the charge transfer transition from carboxylate-O to Cltpy via Fe(II/III) bridging center (carboxylate-O-Fe-CltPy). The product isolated from the reaction is finally characterized as Fe(III)@1-CP. It is presumed that product Fe(II)@1-CP may undergo fast aerial oxidation to transform Fe(III)@1-CP. The FeIII exchanged framework (Fe(III)@1-CP) has been characterized by PXRD, IR, TGA and energy dispersive X-ray analysis (EDX)-SEM. The MTT assay calculates the cell viability (%), and the tolerance limit is 100 µM to total Fe2+ and Fe3+.


Assuntos
Compostos Férricos , Polímeros , Compostos Férricos/química , Ferro/química , Ligantes , Água/química , Compostos Ferrosos/química , Zinco/química
11.
Chem Sci ; 13(5): 1459-1468, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35222930

RESUMO

Visible light photocatalysis enables a broad range of organic transformations that proceed via single electron or energy transfer. Metal polypyridyl complexes are among the most commonly employed visible light photocatalysts. The photophysical properties of these complexes have been extensively studied and can be tuned by modifying the substituents on the pyridine ligands. On the other hand, ligand modifications that enable substrate binding to control reaction selectivity remain rare. Given the exquisite control that enzymes exert over electron and energy transfer processes in nature, we envisioned that artificial metalloenzymes (ArMs) created by incorporating Ru(ii) polypyridyl complexes into a suitable protein scaffold could provide a means to control photocatalyst properties. This study describes approaches to create covalent and non-covalent ArMs from a variety of Ru(ii) polypyridyl cofactors and a prolyl oligopeptidase scaffold. A panel of ArMs with enhanced photophysical properties were engineered, and the nature of the scaffold/cofactor interactions in these systems was investigated. These ArMs provided higher yields and rates than Ru(Bpy)3 2+ for the reductive cyclization of dienones and the [2 + 2] photocycloaddition between C-cinnamoyl imidazole and 4-methoxystyrene, suggesting that protein scaffolds could provide a means to improve the efficiency of visible light photocatalysts.

12.
J Am Chem Soc ; 143(42): 17724-17743, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34637302

RESUMO

Five libraries of natural and synthetic phenolic acids containing five AB3, ten constitutional isomeric AB2, one AB4, and one AB5 were previously synthesized and reported by our laboratory in 5 to 11 steps. They were employed to construct seven libraries of self-assembling dendrons, by divergent generational, deconstruction, and combined approaches, enabling the discovery of a diversity of supramolecular assemblies including Frank-Kasper phases, soft quasicrystals, and complex helical organizations, some undergoing deracemization in the crystal state. However, higher substitution patterns within a single dendron were not accessible. Here we report three libraries consisting of 30 symmetric and nonsymmetric constitutional isomeric phenolic acids with unprecedented sequenced patterns, including two AB2, three AB3, eight AB4, five AB5, six AB6, three AB7, two AB8, and one AB9 synthesized by accelerated modular-orthogonal Ni-catalyzed borylation and cross-coupling. A single etherification step with 4-(n-dodecyloxy)benzyl chloride transformed all these phenolic acids, of interest also for other applications, into self-assembling dendrons. Despite this synthetic simplicity, they led to a diversity of unprecedented self-organizing principles: lamellar structures of interest for biological membrane mimics, helical columnar assemblies from rigid-solid angle dendrons forming Tobacco Mosaic Virus-like assemblies, columnar organizations from adaptable-solid angle dendrons forming disordered micellar-like nonhelical columns, columns from supramolecular spheres, five body-centered cubic phases displaying supramolecular orientational memory, rarely encountered in previous libraries forming predominantly Frank-Kasper phases, and two Frank-Kasper phases. Lessons from these self-organizing principles, discovered within a single generation of self-assembling dendrons, may help elaborate design principles for complex helical and nonhelical organizations of synthetic and biological matter.

13.
J Am Chem Soc ; 142(20): 9525-9536, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32342691

RESUMO

The cogwheel model of hierarchical self-organization provides a route to highly ordered crystalline helical columnar hexagonal arrays of perylene bisimides (PBIs) conjugated to (3,4,5)-dimethyloctyl (racemic dm8*, r) minidendrons. Cogwheel PBIs assemble with identical structural order irrespective of molecular chirality to generate helical columns jacketed with an alkyl coat with length equal to half the helical pitch, exhibiting helical deracemization in the crystal state. These assemblies were accessible only via annealing or cooling and reheating at 1 °C/min. Recently it was discovered that hybrid rr8 sequence-defined dendrons with r and linear n-octyl (8) chains enabled the formation of the cogwheel phase at 10 °C/min upon heating but not cooling. Here we report four libraries of hybrid PBIs with sequence-defined dendrons containing r and n-alkyl (CnH2n+1) chains with n = 6, 7, 9, and 10. Structural analysis of these libraries by fiber X-ray diffraction and differential scanning calorimetry reveals that the 9r9 sequence enables an extraordinary acceleration of cogwheel assembly at rates of up to 50 °C/min on heating and cooling, providing, to the best of our knowledge, the fastest crystallizing supramolecular or covalent macromolecule known. Solid-state NMR studies help to elucidate this unexpected and unprecedented extraordinary acceleration of hierarchical self-organization, which arises from a combination of crystal packing of the ideal tertiary structure and alkyl chain dynamics. This general model raises questions about the use of achiral motifs to achieve high structural order in chiral systems and the need for disorder to create order in complex biological and bioinspired synthetic systems.

14.
J Am Chem Soc ; 141(40): 15761-15766, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31529966

RESUMO

A dendronized perylene bisimide (PBI) that self-organizes into hexagonal arrays of supramolecular double helices with identical single-crystal-like order that disregards chirality was recently reported. A cogwheel model of self-assembly that explains this process was proposed. Accessing the highly ordered cogwheel phase required very slow heating and cooling or extended periods of annealing. Analogous PBIs with linear alkyl chains did not exhibit the cogwheel assembly. Here a library of sequence-defined dendrons containing all possible compositions of linear and racemic alkyl chains was employed to construct self-assembling PBIs. Thermal and structural analysis of their assemblies by differential scanning calorimetry (DSC) and fiber X-ray diffraction (XRD) revealed that the incorporation of n-alkyl chains accelerates the formation of the high order cogwheel phase, rendering the previously invisible phase accessible under standard heating and cooling rates. Small changes to the primary structure, as constitutional isomerism, result in significant changes to macroscopic properties such as melting of the periodic array. This study demonstrated how changes to the sequence-defined primary structure, including the relocation of methyl groups between two constitutional isomers, dictate tertiary and quaternary structure in hierarchical assemblies. This led to the discovery of a sequence that self-organizes the cogwheel assembly much faster than even the corresponding homochiral compounds and demonstrated that defined-sequence, which has long been recognized as a determinant for the complex structure of biomacromolecules including proteins and nucleic acids, plays the same role also in supramolecular synthetic systems.

15.
J Am Chem Soc ; 141(15): 6162-6166, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30933489

RESUMO

Frank-Kasper phases and liquid quasicrystals self-organize from supramolecular spheres of dendrimers, block copolymers, surfactants and other self-assembling molecules. These spheres are expected to be achiral due to their isotropic shape. Nevertheless, supramolecular spheres from short helical stacks of crown-like dendrimers self-organize a Pm3̅ n cubic (Frank-Kasper A15) phase which exhibits chirality on the macroscopic scale. However, the chirality of classic isotropic supramolecular micellar-like spheres, generated from conical dendrons, is unknown. Here we report a library of second and third generation biphenylpropyl dendrons with chiral groups at their apex that produces single-handed chiral supramolecular spheres. Up to 480 conical dendrons self-assemble to form micellar-like spheres, with a molar mass of up to 1.1 × 106 g/mol, that self-organize into a Pm3̅ n phase with chirality detectable on the macroscopic scale. This demonstration of chirality in micellar-like spheres of a Frank-Kasper phase raises the fundamental question whether micellar-like spheres forming 3D phases generated from other soft matter such as block copolymers, surfactants, and other molecules are chiral.

16.
Proc Natl Acad Sci U S A ; 116(12): 5376-5382, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819900

RESUMO

Self-assembling dendrimers have facilitated the discovery of periodic and quasiperiodic arrays of supramolecular architectures and the diverse functions derived from them. Examples are liquid quasicrystals and their approximants plus helical columns and spheres, including some that disregard chirality. The same periodic and quasiperiodic arrays were subsequently found in block copolymers, surfactants, lipids, glycolipids, and other complex molecules. Here we report the discovery of lamellar and hexagonal periodic arrays on the surface of vesicles generated from sequence-defined bicomponent monodisperse oligomers containing lipid and glycolipid mimics. These vesicles, known as glycodendrimersomes, act as cell-membrane mimics with hierarchical morphologies resembling bicomponent rafts. These nanosegregated morphologies diminish sugar-sugar interactions enabling stronger binding to sugar-binding proteins than densely packed arrangements of sugars. Importantly, this provides a mechanism to encode the reactivity of sugars via their interaction with sugar-binding proteins. The observed sugar phase-separated hierarchical arrays with lamellar and hexagonal morphologies that encode biological recognition are among the most complex architectures yet discovered in soft matter. The enhanced reactivity of the sugar displays likely has applications in material science and nanomedicine, with potential to evolve into related technologies.


Assuntos
Materiais Biomiméticos/química , Membrana Celular/química , Biomimética/métodos , Dendrímeros/química , Glicolipídeos/química , Lipídeos/química , Nanomedicina/métodos , Açúcares/química , Tensoativos/química
17.
J Am Chem Soc ; 140(49): 16941-16947, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30462922

RESUMO

Liquid quasicrystals (LQC) have been discovered in self-assembling benzyl ether, biphenylmethyl ether, phenylpropyl ether, biphenylpropyl ether and some of their hybrid dendrons and subsequently in block copolymers, surfactants and other assemblies. These quasiperiodic arrays, which lack long-range translational periodicity, are approximated by two Frank-Kasper periodic arrays, Pm3̅ n cubic (Frank-Kasper A15) and P42/ mnm tetragonal (Frank-Kasper σ), which have been discovered in complex soft matter in the same order and compounds. Poly(2-oxazoline)s dendronized with (3,4) nG1 minidendrons (where n denotes an alkyl chain, C nH2 n+1) self-organize into the Pm3̅ n cubic phase ( n = 14 and 15) and, as reported recently, the P42/ mnm tetragonal phase ( n = 16). However, no LQC of a poly(2-oxazoline) is yet known. Here we report the synthesis, structural and retrostructural analysis of a dendronized poly(2-oxazoline) with n = 17 which self-organizes not only into the LQC but also in the above two Frank-Kasper approximants. All three phases are observed from the same polymer within a very narrow range of degree of polymerization that corresponds to only five monomer repeat units (5 ≤ DP ≤ 10). The formation of the Pm3̅ n cubic, P42/ mnm tetragonal and LQC phases from a single polymer chain within such a narrow range of DP raises the questions of how and why each of these phases is self-organized. This system may provide a model for theoretical investigations into the self-organization of soft matter into Frank-Kasper and related periodic and quasiperiodic arrays.

18.
J Am Chem Soc ; 140(41): 13478-13487, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30238744

RESUMO

The supramolecular column is an archetypal architecture in the field of periodic liquid crystalline and crystalline arrays. Columns are generated via self-assembly, coassembly, and polymerization of monomers containing molecules shaped as discs, tapered, twin- and Janus-tapered, crowns, hat-shaped crowns, and fragments thereof. These supramolecular columns can be helical and therefore exhibit chirality. In contrast, spheres represent a fundamentally distinct architecture, generated from conical and crown-like molecules, which self-organize into body-centered cubic, Pm3̅ n cubic (also known as Frank-Kasper A15), and tetragonal (also known as Frank-Kasper σ) phases. Supramolecular spherical aggregates are not known to further assemble into a columnar architecture, except as an intermediate state between a columnar periodic array and a cubic phase. In the present work, a chiral dendronized cyclotetraveratrylene (CTTV) derivative is demonstrated to self-organize into a supramolecular column unexpectedly constructed from supramolecular spheres, with no subsequent transition to a cubic phase. Structural and retrostructural analysis using a combination of differential scanning calorimetry, X-ray diffraction (XRD), molecular modeling, and simulation of XRD patterns reveals that this CTTV derivative, which is functionalized with eight chiral first-generation minidendrons, self-organizes via a column-from-spheres model. The transition from column to column-from-spheres was monitored by circular dichroism spectroscopy, which demonstrated that both the supramolecular column and supramolecular spheres are chiral. This column-from-spheres model, which unites two fundamentally distinct self-assembled architectures, provides a new mechanism to self-organize supramolecular columnar architectures.

19.
J Am Chem Soc ; 140(6): 2179-2185, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29343060

RESUMO

Addition of CO2 to a low-valent nickel species has been explored with a newly designed acriPNP pincer ligand (acriPNP- = 4,5-bis(diisopropylphosphino)-2,7,9,9-tetramethyl-9H-acridin-10-ide). This is a crucial step in understanding biological CO2 conversion to CO found in carbon monoxide dehydrogenase (CODH). A four-coordinate nickel(0) state was reliably accessed in the presence of a CO ligand, which can be prepared from a stepwise reduction of a cationic {(acriPNP)Ni(II)-CO}+ species. All three Ni(II), Ni(I), and Ni(0) monocarbonyl species were cleanly isolated and spectroscopically characterized. Addition of electrons to the nickel(II) species significantly alters its geometry from square planar toward tetrahedral because of the filling of the dx2-y2 orbital. Accordingly, the CO ligand position changes from equatorial to axial, ∠N-Ni-C of 176.2(2)° to 129.1(4)°, allowing opening of a CO2 binding site. Upon addition of CO2 to a nickel(0)-CO species, a nickel(II) carboxylate species with a Ni(η1-CO2-κC) moiety was formed and isolated (75%). This reaction occurs with the concomitant expulsion of CO(g). This is a unique result markedly different from our previous report involving the flexible analogous PNP ligand, which revealed the formation of multiple products including a tetrameric cluster from the reaction with CO2. Finally, the carbon dioxide conversion to CO at a single nickel center is modeled by the successful isolation of all relevant intermediates, such as Ni-CO2, Ni-COOH, and Ni-CO.

20.
J Am Chem Soc ; 139(44): 15977-15983, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29043793

RESUMO

Combining monodisperse building blocks that have distinct folding properties serves as a modular strategy for controlling structural complexity in hierarchically organized materials. We combine an α-helical bundle-forming peptide with self-assembling dendrons to better control the arrangement of functional groups within cylindrical nanostructures. Site-specific grafting of dendrons to amino acid residues on the exterior of the α-helical bundle yields monodisperse macromolecules with programmable folding and self-assembly properties. The resulting hybrid biomaterials form thermotropic columnar hexagonal mesophases in which the peptides adopt an α-helical conformation. Bundling of the α-helical peptides accompanies self-assembly of the peptide-dendron hybrids into cylindrical nanostructures. The bundle stoichiometry in the mesophase agrees well with the size found in solution for α-helical bundles of peptides with a similar amino acid sequence.


Assuntos
Dendrímeros/química , Nanoestruturas/química , Peptídeos/química , Dendrímeros/síntese química , Cristais Líquidos/química , Modelos Moleculares , Peptídeos/síntese química , Conformação Proteica em alfa-Hélice
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA