Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 269: 119898, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702211

RESUMO

Generative adversarial networks (GANs) are one powerful type of deep learning models that have been successfully utilized in numerous fields. They belong to the broader family of generative methods, which learn to generate realistic data with a probabilistic model by learning distributions from real samples. In the clinical context, GANs have shown enhanced capabilities in capturing spatially complex, nonlinear, and potentially subtle disease effects compared to traditional generative methods. This review critically appraises the existing literature on the applications of GANs in imaging studies of various neurological conditions, including Alzheimer's disease, brain tumors, brain aging, and multiple sclerosis. We provide an intuitive explanation of various GAN methods for each application and further discuss the main challenges, open questions, and promising future directions of leveraging GANs in neuroimaging. We aim to bridge the gap between advanced deep learning methods and neurology research by highlighting how GANs can be leveraged to support clinical decision making and contribute to a better understanding of the structural and functional patterns of brain diseases.


Assuntos
Doença de Alzheimer , Neurociências , Humanos , Neuroimagem , Envelhecimento , Encéfalo
2.
IEEE Trans Med Imaging ; 40(3): 940-950, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33284752

RESUMO

The study of functional networks of the human brain has been of significant interest in cognitive neuroscience for over two decades, albeit they are typically extracted at a single scale using various methods, including decompositions like ICA. However, since numerous studies have suggested that the functional organization of the brain is hierarchical, analogous decompositions might better capture functional connectivity patterns. Moreover, hierarchical decompositions can efficiently reduce the very high dimensionality of functional connectivity data. This paper provides a novel method for the extraction of hierarchical connectivity components in the human brain using resting-state fMRI. The method builds upon prior work of Sparse Connectivity Patterns (SCPs) by introducing a hierarchy of sparse, potentially overlapping patterns. The components are estimated by cascaded factorization of correlation matrices generated from fMRI. The goal of the paper is to extract sparse interpretable hierarchically-organized patterns using correlation matrices where a low rank decomposition is formed by a linear combination of a higher rank decomposition. We formulate the decomposition as a non-convex optimization problem and solve it using gradient descent algorithms with adaptive step size. Along with the hierarchy, our method aims to capture the heterogeneity of the set of common patterns across individuals. We first validate our model through simulated experiments. We then demonstrate the effectiveness of the developed method on two different real-world datasets by showing that multi-scale hierarchical SCPs are reproducible between sub-samples and are more reproducible as compared to single scale patterns. We also compare our method with an existing hierarchical community detection approach.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos
3.
Expert Syst Appl ; 87: 384-391, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30319179

RESUMO

PURPOSE: To assess the impact of varying magnetic resonance imaging (MRI) scanner parameters on the extraction of algorithmic features in breast MRI radiomics studies. METHODS: In this retrospective study, breast imaging data for 272 patients were analyzed with magnetic resonance (MR) images. From the MR images, we assembled and implemented 529 algorithmic features of breast tumors and fibrograndular tissue (FGT). We divided the features into 10 groups based on the type of data used for the feature extraction and the nature of the extracted information. Three scanner parameters were considered: scanner manufacturer, scanner magnetic field strength, and slice thickness. We assessed the impact of each of the scanner parameters on each of the feature by testing whether the feature values are systematically diverse for different values of these scanner parameters. A two-sample t-test has been used to establish whether the impact of a scanner parameter on values of a feature is significant and receiver operating characteristics have been used for to establish the extent of that effect. RESULTS: On average, higher proportion (69% FGT versus 20% tumor) of FGT related features were affected by the three scanner parameters. Of all feature groups and scanner parameters, the feature group related to the variation in FGT enhancement was found to be the most sensitive to the scanner manufacturer (AUC = 0.81 ± 0.14). CONCLUSIONS: Features involving calculations from FGT are particularly sensitive to the scanner parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA