Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 356: 141747, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556178

RESUMO

The present study aims to establish NaOCl as a potential oxidant in the COD removal of Acid Orange 8 using UVC light (λ = 254 nm) and Fe2+ as catalysts. The different systems used in this study are NaOCl, Fe2+/NaOCl, UV/NaOCl, and Fe2+/NaOCl/UV. All these process were found to be operative in acidic, neutral and basic medium. The initial decolorisation and COD removal efficiency (CODeff) for different systems follow the order: Fe2+/NaOCl/UV > UV/NaOCl > Fe2+/NaOCl > NaOCl. Nevertheless, NaOCl can alone be used in the treatment process considering its CODeff to the extent of 95% in 90 min. The change in pH of the solutions after treatment is an important observation - for non-UV systems it remained around 11.0 and 7.0 in other systems. Thus, UV systems are environmental benign. The effect of various anions on CODeff was tested in Fe2+ systems. Presence of F- ions were found to accelerate CODeff in both the systems. However, the effect is more pronounced in Fe2+/ NaOCl/UV, where complete CODeff was observed in the presence of 9.0 gl-1 of F-. The COD removal kinetics for all systems was studied using zero-order, first-order, second-order, and BMG kinetic models. BMG model was found to be more suitable among all and is in good agreement with CODeff of all systems. It is, therefore, established that NaOCl can serve as a powerful oxidant in the advanced oxidation process.


Assuntos
Compostos Azo , Ferro , Oxidantes , Hipoclorito de Sódio , Raios Ultravioleta , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Catálise , Oxidantes/química , Hipoclorito de Sódio/química , Ferro/química , Compostos Azo/química , Cinética , Análise da Demanda Biológica de Oxigênio , Benzenossulfonatos/química , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Oxirredução
2.
Artigo em Inglês | MEDLINE | ID: mdl-38044673

RESUMO

Two-dimensional semiconductors such as monolayer MoS2 have attracted considerable attention owing to their exceptional electronic and optical characteristics. However, their practical application has been hindered by the limited light absorption resulting from atomically thin thickness and low quantum yield. A highly effective approach to address these limitations is by integrating subwavelength plasmonic nanostructures with monolayer semiconductors. In this study, we employed electron beam lithography and nanoelectroplating techniques to develop a gold nanodisc (AuND) array plasmonic platform. Monolayer MoS2 transferred on top of the AuND array yields up to 150-fold photoluminescence enhancement compared to a gold film without normalization with respect to plasmonic hot spots. In addition, the unique protocol of nanoelectroplating helps to get flat-top cylindrical discs which enable less tear during the delicate wet transfer of monolayer MoS2. We explain our experimental findings based on electromagnetic simulations.

3.
Nanotechnology ; 34(19)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36745912

RESUMO

Sensing lower molecular weight in a diluted solution using a label-free biosensor is challenging and requires a miniaturized plasmonic structure, e.g. a vertical Au nanorod (AuNR) array-based metamaterials. The sensitivity of a sensor mainly depends on transducer properties and hence for instance, the AuNR array geometry requires optimization. Physical vapour deposition methods (e.g. sputtering and e-beam evaporation) require a vacuum environment to deposit Au, which is costly, time-consuming, and thickness-limited. On the other hand, chemical deposition, i.e. electroplating deposit higher thickness in less time and at lower cost, becomes an alternative method for Au deposition. In this work, we present a detailed optimization for the electroplating-based fabrication of these metamaterials. We find that slightly acidic (6.0 < pH < 7.0) gold sulfite solution supports immersion deposition, which should be minimized to avoid uncontrolled Au deposition. Immersion deposition leads to plate-like (for smaller radius AuNR) or capped-like, i.e. mushroom (for higher radius AuNR) structure formation. The electroplating time and DC supply are the tuning parameters that decide the geometry of the vertically aligned AuNR array in area-dependent electroplating deposition. This work will have implications for developing plasmonic metamaterial-based sensors.

4.
Acta Chim Slov ; 68(4): 833-848, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34918766

RESUMO

The removal of mixture of two azo dyes, Acid blue 29 and Ponceau xylidine, was studied by heterogeneous Fenton and Fenton-type processes using hydrogen peroxide and sodium persulphate as oxidants in the presence of and nano and micro- particles as catalysts. The synthesised nano- particles were characterised using analytical techniques viz. FT-IR, TEM, EDX, powder XRD and VSM. We have examined the effects of particle size on the COD removal efficiency and the reusability of the catalyst after optimising pH, and concentrations of catalyst and oxidant. Combination of nano-  and hydrogen peroxide possessed higher COD removal efficiency, which was accelerated in acidic pH and inhibited at pH > 6. Total consumption of hydrogen peroxide confirmed the efficiency of the optimised parameters. The mechanism of the formation of intermediate ions and products are proposed. COD removal and consumption of hydrogen peroxide follow pseudo-first-order kinetics. The toxicity of the solutions was assessed using Aliivibrio fischeri light loss and Escherichia coli growth inhibition assays. Both the assays showed different toxicity levels for the same solution.


Assuntos
Corantes/química , Peróxido de Hidrogênio/química , Ferro/química , Aliivibrio fischeri/efeitos dos fármacos , Compostos Azo/química , Compostos Azo/isolamento & purificação , Compostos Azo/farmacologia , Catálise , Corantes/isolamento & purificação , Corantes/farmacologia , Escherichia coli/efeitos dos fármacos , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas Metálicas/química , Naftalenos/química , Naftalenos/isolamento & purificação , Naftalenos/farmacologia , Oxirredução , Tamanho da Partícula , Compostos de Sódio/química , Sulfatos/química
5.
Sci Rep ; 11(1): 24189, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921206

RESUMO

Metal-assisted chemical etching (MACE) is popular due to the large-area fabrication of silicon nanowires (SiNWs) exhibiting a high aspect ratio at a low cost. The remanence of metal, i.e., silver nanoparticles (AgNPs) used in the MACE, deteriorates the device (especially solar cell) performance by acting as a defect center. The superhydrophobic behavior of nanowires (NWs) array prohibits any liquid-based solution (i.e., thorough cleaning with HNO3 solution) from removing the AgNPs. Thermal treatment of NWs is an alternative approach to reduce the Ag remanence. Sintering temperature variation is chosen between the melting temperature of bulk-Ag (962 °C) and bulk-Si (1412 °C) to reduce the Ag particles and improve the crystallinity of the NWs. The melting point of NWs decreases due to surface melting that restricts the sintering temperature to 1200 °C. The minimum sintering temperature is set to 1000 °C to eradicate the Ag remanence. The SEM-EDS analysis is carried out to quantify the reduction in Ag remanence in the sintered NWs array. The XRD analysis is performed to study the oxides (SiO and Ag2O) formed in the NWs array due to the trace oxygen level in the furnace. The TG-DSC characterization is carried out to know the critical sintering temperature at which remanence of AgNPs removes without forming any oxides. The Raman analysis is studied to determine the crystallinity, strain, and size of Si nanocrystals (SiNCs) formed on the NWs surface due to sidewalls etching. An optimized polynomial equation is derived to find the SiNCs size for various sintering temperatures.

6.
Water Sci Technol ; 77(11-12): 2917-2928, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30065144

RESUMO

The present study reports a process for simultaneous mineralization and detoxification of Mordant Black 17 with high electrical energy efficiency. Hydrogen peroxide and ammonium persulphate (APS) were used for the generation of hydroxyl and sulphate radicals using UV light (λ = 254 nm) and Fe2+ and Ag+ ions as catalysts. The detoxification and energy efficiency of various processes were measured by monitoring growth inhibition of Escherichia coli and Electrical Energy per Order (EE/O) applicable for low concentration contaminants respectively. Systems catalyzed by Fe2+ are more energy efficient and possess higher mineralization and detoxification efficiency than that of Ag+. The concentration of the catalysts and oxidants were found to strongly influence the EE/O of the systems. The most cost efficient processes for simultaneous mineralization and detoxification are Fe2+/APS/UV at pH 3.00 and Fe2+/H2O2/UV at pH 3.00 and 5.78. The upper limit concentration of Fe2+ is fixed at 0.01 mM for complete detoxification. The treated solutions start detoxifying at this concentration, above which they remain more toxic than the original dye solution irrespective of the extent of mineralization. On the contrary, no such limit could be established for Ag+ systems for complete detoxification even after 91% mineralization.


Assuntos
Compostos Azo/química , Peróxido de Hidrogênio/química , Manganês/química , Poluentes Químicos da Água/química , Sulfato de Amônio/química , Corantes/química , Escherichia coli/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Oxidantes , Oxirredução , Prata/química , Soluções , Sulfatos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA