Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 14(9): 7256-7266, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38721374

RESUMO

Stereoselective synthesis of quaternary stereocenters represents a significant challenge in organic chemistry. Herein, we describe the use of ene-reductases OPR3 and YqjM for the efficient asymmetric synthesis of chiral 4,4-disubstituted 2-cyclohexenones via desymmetrizing hydrogenation of prochiral 4,4-disubstituted 2,5-cyclohexadienones. This transformation breaks the symmetry of the cyclohexadienone substrates, generating valuable quaternary stereocenters with high enantioselectivities (ee, up to >99%). The mechanistic causes for the observed high enantioselectivities were investigated both experimentally (stopped-flow kinetics) as well as theoretically (quantum mechanics/molecular mechanics calculations). The synthetic potential of the resulting chiral enones was demonstrated in several diversification reactions in which the stereochemical integrity of the quaternary stereocenter could be preserved.

2.
ACS Catal ; 14(3): 1257-1266, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38327643

RESUMO

The reduction of C=X (X = N, O) bonds is a cornerstone in both synthetic organic chemistry and biocatalysis. Conventional reduction mechanisms usually involve a hydride ion targeting the less electronegative carbon atom. In a departure from this paradigm, our investigation into Old Yellow Enzymes (OYEs) reveals a mechanism involving transfer of hydride to the formally more electronegative nitrogen atom within a C=N bond. Beyond their known ability to reduce electronically activated C=C double bonds, e.g., in α, ß-unsaturated ketones, these enzymes have recently been shown to reduce α-oximo-ß-ketoesters to the corresponding amines. It has been proposed that this transformation involves two successive reduction steps and proceeds via imine intermediates formed by the reductive dehydration of the oxime moieties. We employ advanced quantum mechanics/molecular mechanics (QM/MM) simulations, enriched by a two-tiered approach incorporating QM/MM (UB3LYP-6-31G*/OPLS2005) geometry optimization, QM/MM (B3LYP-6-31G*/amberff19sb) steered molecular dynamics simulations, and detailed natural-bond-orbital analyses to decipher the unconventional hydride transfer to nitrogen in both reduction steps and to delineate the role of active site residues as well as of substituents present in the substrates. Our computational results confirm the proposed mechanism and agree well with experimental mutagenesis and enzyme kinetics data. According to our model, the catalysis of OYE involves hydride transfer from the flavin cofactor to the nitrogen atom in oximoketoesters as well as iminoketoesters followed by protonation at the adjacent oxygen or carbon atoms by conserved tyrosine residues and active site water molecules. Two histidine residues play a key role in the polarization and activation of the C=N bond, and conformational changes of the substrate observed along the reaction coordinate underline the crucial importance of dynamic electron delocalization for efficient catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA