Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 76: 101781, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482186

RESUMO

OBJECTIVE: Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. METHODS: We developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R21→A). RESULTS: We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by an environmental temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue. CONCLUSIONS: The ΔTLQP-21 mouse line can be a valuable resource to conduct mechanistic studies on the necessary role of TLQP-21 in physiology and disease, while also serving as a platform to test the specificity of novel antibodies or immunoassays directed at TLQP-21. Our approach also has far-reaching implications by informing the development of knowledge-based genetic engineering approaches to generate selective loss of function of other peptides encoded by pro-hormones genes, leaving all other peptides within the pro-protein precursor intact and unmodified.


Assuntos
Metabolismo Energético , Neuropeptídeos , Hormônios Peptídicos , Animais , Camundongos , Dieta , Homeostase , Neuropeptídeos/genética , Neuropeptídeos/química , Fragmentos de Peptídeos/farmacologia , Metabolismo Energético/genética , Metabolismo Energético/fisiologia
2.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993202

RESUMO

Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. Here, we developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R 21 →A). We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by a temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue.

4.
Diabetes ; 71(3): 538-553, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862200

RESUMO

Pancreastatin (PST), a chromogranin A-derived potent physiological dysglycemic peptide, regulates glucose/insulin homeostasis. We have identified a nonsynonymous functional PST variant (p.Gly297Ser; rs9658664) that occurs in a large section of human populations. Association analysis of this single nucleotide polymorphism with cardiovascular/metabolic disease states in Indian populations (n = 4,300 subjects) displays elevated plasma glucose, glycosylated hemoglobin, diastolic blood pressure, and catecholamines in Gly/Ser subjects as compared with wild-type individuals (Gly/Gly). Consistently, the 297Ser allele confers an increased risk (∼1.3-1.6-fold) for type 2 diabetes/hypertension/coronary artery disease/metabolic syndrome. In corroboration, the variant peptide (PST-297S) displays gain-of-potency in several cellular events relevant for cardiometabolic disorders (e.g., increased expression of gluconeogenic genes, increased catecholamine secretion, and greater inhibition of insulin-stimulated glucose uptake) than the wild-type peptide. Computational docking analysis and molecular dynamics simulations show higher affinity binding of PST-297S peptide with glucose-regulated protein 78 (GRP78) and insulin receptor than the wild-type peptide, providing a mechanistic basis for the enhanced activity of the variant peptide. In vitro binding assays validate these in silico predictions of PST peptides binding to GRP78 and insulin receptor. In conclusion, the PST 297Ser allele influences cardiovascular/metabolic phenotypes and emerges as a novel risk factor for type 2 diabetes/hypertension/coronary artery disease in human populations.


Assuntos
Doenças Cardiovasculares/genética , Cromogranina A/genética , Predisposição Genética para Doença/genética , Doenças Metabólicas/genética , Sequência de Aminoácidos , Animais , Catecolaminas/sangue , Linhagem Celular , Linhagem Celular Tumoral , Cromogranina A/química , Cromogranina A/metabolismo , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Chaperona BiP do Retículo Endoplasmático/metabolismo , Estudos de Associação Genética/métodos , Células Hep G2 , Humanos , Hipertensão/genética , Índia , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ratos , Receptor de Insulina/metabolismo
5.
Cell Mol Life Sci ; 78(23): 7133-7144, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34626205

RESUMO

The TLQP-21 neuropeptide has been implicated in functions as diverse as lipolysis, neurodegeneration and metabolism, thus suggesting an important role in several human diseases. Three binding targets have been proposed for TLQP-21: C3aR1, gC1qR and HSPA8. The aim of this review is to critically evaluate the molecular identity of the TLQP-21 receptor and the proposed multi-receptor mechanism of action. Several studies confirm a critical role for C3aR1 in TLQP-21 biological activity and a largely conserved mode of binding, receptor activation and signaling with C3a, its first-identified endogenous ligand. Conversely, data supporting a role of gC1qR and HSPA8 in TLQP-21 activity remain limited, with no signal transduction pathways being described. Overall, C3aR1 is the only receptor for which a necessary and sufficient role in TLQP-21 activity has been confirmed thus far. This conclusion calls into question the validity of a multi-receptor mechanism of action for TLQP-21 and should inform future studies.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas Mitocondriais/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de Complemento/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Fragmentos de Peptídeos/genética , Transdução de Sinais/fisiologia
6.
Cell Rep ; 28(10): 2567-2580.e6, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484069

RESUMO

Structural and functional diversity of peptides and GPCR result from long evolutionary processes. Even small changes in sequence can alter receptor activation, affecting therapeutic efficacy. We conducted a structure-function relationship study on the neuropeptide TLQP-21, a promising target for obesity, and its complement 3a receptor (C3aR1). After having characterized the TLQP-21/C3aR1 lipolytic mechanism, a homology modeling and molecular dynamics simulation identified the TLQP-21 binding motif and C3aR1 binding site for the human (h) and mouse (m) molecules. mTLQP-21 showed enhanced binding affinity and potency for hC3aR1 compared with hTLQP-21. Consistently, mTLQP-21, but not hTLQP-21, potentiates lipolysis in human adipocytes. These findings led us to uncover five mutations in the C3aR1 binding pocket of the rodent Murinae subfamily that are causal for enhanced calculated affinity and measured potency of TLQP-21. Identifying functionally relevant peptide/receptor co-evolution mechanisms can facilitate the development of innovative pharmacotherapies for obesity and other diseases implicating GPCRs.


Assuntos
Evolução Molecular , Lipólise , Neuropeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de Complemento/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Adrenérgicos/farmacologia , Adulto , Motivos de Aminoácidos , Animais , Cálcio/metabolismo , Simulação por Computador , Espaço Extracelular/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Obesidade/metabolismo , Ligação Proteica/efeitos dos fármacos , Homologia Estrutural de Proteína
8.
Neuropeptides ; 71: 97-103, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29958697

RESUMO

TLQP-21 is a multifunctional neuropeptide and a promising new medicinal target for cardiometabolic and neurological diseases. However, to date its clearance kinetics and plasma stability have not been studied. The presence of four arginine residues led us to hypothesize that its half-life is relatively short. Conversely, its biological activities led us to hypothesize that the peptide is still taken up by adipose tissues effectively. [125I]TLQP-21 was i.v. administered in rats followed by chasing the plasma radioactivity and assessing tissue uptake. Plasma stability was measured using LC-MS. In vivo lipolysis was assessed by the palmitate rate of appearance. RESULTS: A small single i.v. dose of [125I]TLQP-21 had a terminal half-life of 110 min with a terminal clearance rate constant, kt, of 0.0063/min, and an initial half-life of 0.97 min with an initial clearance rate constant, ki, of 0.71/min. The total net uptake by adipose tissue accounts for 4.4% of the entire dose equivalent while the liver, pancreas and adrenal gland showed higher uptake. Uptake by the brain was negligible, suggesting that i.v.-injected peptide does not cross the blood-brain-barrier. TLQP-21 sustained isoproterenol-stimulated lipolysis in vivo. Finally, TLQP-21 was rapidly degraded producing several N-terminal and central sequence fragments after 10 and 60 min in plasma in vitro. This study investigated the clearance and stability of TLQP-21 peptide for the first time. While its pro-lipolytic effect supports and extends previous findings, its short half-life and sequential cleavage in the plasma suggest strategies for chemical modifications in order to enhance its stability and therapeutic efficacy.


Assuntos
Fragmentos de Peptídeos/farmacocinética , Animais , Lipólise/efeitos dos fármacos , Masculino , Taxa de Depuração Metabólica , Ratos , Ratos Sprague-Dawley
9.
Mol Biol Cell ; 28(20): 2676-2685, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814506

RESUMO

The dense core vesicles (DCVs) of neuroendocrine cells are a rich source of bioactive molecules such as peptides, hormones, and neurotransmitters, but relatively little is known about how they are formed. Using fractionation profiling, a method that combines subcellular fractionation with mass spectrometry, we identified ∼1200 proteins in PC12 cell vesicle-enriched fractions, with DCV-associated proteins showing distinct profiles from proteins associated with other types of vesicles. To investigate the role of clathrin in DCV biogenesis, we stably transduced PC12 cells with an inducible short hairpin RNA targeting clathrin heavy chain, resulting in ∼85% protein loss. DCVs could still be observed in the cells by electron microscopy, but mature profiles were approximately fourfold less abundant than in mock-treated cells. By quantitative mass spectrometry, DCV-associated proteins were found to be reduced approximately twofold in clathrin-depleted cells as a whole and approximately fivefold in vesicle-enriched fractions. Our combined data sets enabled us to identify new candidate DCV components. Secretion assays revealed that clathrin depletion causes a near-complete block in secretagogue-induced exocytosis. Taken together, our data indicate that clathrin has a function in DCV biogenesis beyond its established role in removing unwanted proteins from the immature vesicle.


Assuntos
Clatrina/metabolismo , Vesículas Secretórias/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Cadeias Pesadas de Clatrina/metabolismo , Exocitose/fisiologia , Espectrometria de Massas/métodos , Células Neuroendócrinas/metabolismo , Células PC12 , Ratos , Frações Subcelulares
10.
J Biol Chem ; 292(34): 13970-13985, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28667172

RESUMO

The acidic glycoprotein chromogranin A (CHGA) is co-stored/co-secreted with catecholamines and crucial for secretory vesicle biogenesis in neuronal/neuroendocrine cells. CHGA is dysregulated in several cardiovascular diseases, but the underlying mechanisms are not well established. Here, we sought to identify common polymorphisms in the CHGA promoter and to explore the mechanistic basis of their plausible contribution to regulating CHGA protein levels in circulation. Resequencing of the CHGA promoter in an Indian population (n = 769) yielded nine single-nucleotide polymorphisms (SNPs): G-1106A, A-1018T, T-1014C, T-988G, G-513A, G-462A, T-415C, C-89A, and C-57T. Linkage disequilibrium (LD) analysis indicated strong LD among SNPs at the -1014, -988, -462, and -89 bp positions and between the -1018 and -57 bp positions. Haplotype analysis predicted five major promoter haplotypes that displayed differential promoter activities in neuronal cells; specifically, haplotype 2 (containing variant T alleles at -1018 and -57 bp) exhibited the highest promoter activity. Systematic computational and experimental analyses revealed that transcription factor c-Rel has a role in activating the CHGA promoter haplotype 2 under basal and pathophysiological conditions (viz. inflammation and hypoxia). Consistent with the higher in vitro CHGA promoter activity of haplotype 2, individuals carrying this haplotype had higher plasma CHGA levels, plasma glucose levels, diastolic blood pressure, and body mass index. In conclusion, these results suggest a functional role of the CHGA promoter haplotype 2 (occurring in a large proportion of the world population) in enhancing CHGA expression in haplotype 2 carriers who may be at higher risk for cardiovascular/metabolic disorders.


Assuntos
Doenças Cardiovasculares/genética , Cromogranina A/genética , Regulação da Expressão Gênica , Transtornos do Metabolismo de Glucose/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-rel/metabolismo , Alelos , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Cromogranina A/sangue , Cromogranina A/metabolismo , Biologia Computacional , Ensaio de Desvio de Mobilidade Eletroforética , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Transtornos do Metabolismo de Glucose/sangue , Transtornos do Metabolismo de Glucose/metabolismo , Humanos , Índia , Desequilíbrio de Ligação , Mutagênese Sítio-Dirigida , Mutação , Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Recombinantes/metabolismo
11.
Hypertension ; 68(2): 334-47, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27324226

RESUMO

Catestatin (CST), an endogenous antihypertensive/antiadrenergic peptide, is a novel regulator of cardiovascular physiology. Here, we report case-control studies in 2 geographically/ethnically distinct Indian populations (n≈4000) that showed association of the naturally-occurring human CST-Gly364Ser variant with increased risk for hypertension (age-adjusted odds ratios: 1.483; P=0.009 and 2.951; P=0.005). Consistently, 364Ser allele carriers displayed elevated systolic (up to ≈8 mm Hg; P=0.004) and diastolic (up to ≈6 mm Hg; P=0.001) blood pressure. The variant allele was also found to be in linkage disequilibrium with other functional single-nucleotide polymorphisms in the CHGA promoter and nearby coding region. Functional characterization of the Gly364Ser variant was performed using cellular/molecular biological experiments (viz peptide-receptor binding assays, nitric oxide [NO], phosphorylated extracellular regulated kinase, and phosphorylated endothelial NO synthase estimations) and computational approaches (molecular dynamics simulations for structural analysis of wild-type [CST-WT] and variant [CST-364Ser] peptides and docking of peptide/ligand with ß-adrenergic receptors [ADRB1/2]). CST-WT and CST-364Ser peptides differed profoundly in their secondary structures and showed differential interactions with ADRB2; although CST-WT displaced the ligand bound to ADRB2, CST-364Ser failed to do the same. Furthermore, CST-WT significantly inhibited ADRB2-stimulated extracellular regulated kinase activation, suggesting an antagonistic role towards ADRB2 unlike CST-364Ser. Consequently, CST-WT was more potent in NO production in human umbilical vein endothelial cells as compared with CST-364Ser. This NO-producing ability of CST-WT was abrogated by ADRB2 antagonist ICI 118551. In conclusion, CST-364Ser allele enhanced the risk for hypertension in human populations, possibly via diminished endothelial NO production because of altered interactions of CST-364Ser peptide with ADRB2 as compared with CST-WT.


Assuntos
Pressão Sanguínea/genética , Cromogranina A/genética , Hipertensão , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/genética , Receptores Adrenérgicos beta 2/fisiologia , Adulto , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Hipertensão/epidemiologia , Hipertensão/genética , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo III/metabolismo , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/fisiologia
12.
Biochemistry ; 53(44): 6878-92, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25295465

RESUMO

Renalase, a novel monoamine oxidase, is emerging as an important regulator of cardiovascular, metabolic, and renal diseases. However, the mechanism of transcriptional regulation of this enzyme remains largely unknown. We undertook a systematic analysis of the renalase gene to identify regulatory promoter elements and transcription factors. Computational analysis coupled with transfection of human renalase promoter/luciferase reporter plasmids (5'-promoter-deletion constructs) into various cell types (HEK-293, IMR32, and HepG2) identified two crucial promoter domains at base pairs -485 to -399 and -252 to -150. Electrophoretic mobility shift assays using renalase promoter oligonucleotides with and without potential binding sites for transcription factors Sp1, STAT3, and ZBP89 displayed formation of specific complexes with HEK-293 nuclear proteins. Consistently, overexpression of Sp1, STAT3, and ZBP89 augmented renalase promoter activity; additionally, siRNA-mediated downregulation of Sp1, STAT3, and ZBP89 reduced the level of endogenous renalase transcription as well as the transfected renalase promoter activity. In addition, chromatin immunoprecipitation assays showed in vivo interactions of these transcription factors with renalase promoter. Interestingly, renalase promoter activity was augmented by nicotine and catecholamines; while Sp1 and STAT3 synergistically activated the nicotine-induced effect, Sp1 appeared to enhance epinephrine-evoked renalase transcription. Moreover, renalase transcript levels in mouse models of human essential hypertension were concomitantly associated with endogenous STAT3 and ZBP89 levels, suggesting crucial roles for these transcription factors in regulating renalase gene expression in cardiovascular pathological conditions.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Monoaminoxidase/genética , Fator de Transcrição STAT3/fisiologia , Fator de Transcrição Sp1/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Sequência Consenso , Hipertensão Essencial , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Hipertensão/enzimologia , Hipertensão/genética , Masculino , Camundongos Endogâmicos , Monoaminoxidase/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Regiões Promotoras Genéticas , Transcrição Gênica , Ativação Transcricional
13.
J Mol Biol ; 426(1): 116-35, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24041570

RESUMO

Although the transcript level of inducible heat shock protein 70.3 (Hsp70.3, also known as Hspa1a) is altered in various disease states, its transcriptional regulation remains incompletely understood. Here, we systematically analyzed the Hspa1a promoter to identify major cis elements and transcription factors that may govern the constitutive/inducible gene expression. Computational analyses coupled with extensive in vitro (promoter-reporter activity and electrophoretic mobility shift assays) and in vivo (chromatin immunoprecipitation assays) revealed interaction of several transcription factors with Hspa1a promoter motifs: HSF-1 (heat shock factor 1) at -114/-97 bp and -788/-777bp, NF-Y (nuclear transcription factor Y) at -73/-58 bp, NF-κB (nuclear factor kappa B) at -133/-124 bp, and CREB (cAMP response element binding protein) at -483/-476 bp. Consistently, siRNA (small interfering RNA)-mediated down-regulation of each of these transcription factors caused substantial reduction of endogenous Hspa1a expression. Heat-shock-induced activation of Hspa1a was coordinately regulated by HSF-1 and NF-Y/NF-κB. The Hspa1a expression was augmented by TNF-α (tumor necrosis factor-alpha) and forskolin in NF-κB and CREB-dependent manners, respectively. NF-κB and CREB also activated Hspa1a transcription in cardiac myoblasts upon exposure to ischemia-like conditions. Taken together, this study discovered previously unknown roles for NF-κB and CREB to regulate Hspa1a expression and a coordinated action by several transcription factors for Hspa1a transactivation under heat-shock/ischemia-like conditions and thereby provided new insights into the mechanism of Hspa1a regulation.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/biossíntese , NF-kappa B/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fusão Gênica Artificial , Imunoprecipitação da Cromatina , Biologia Computacional , Ensaio de Desvio de Mobilidade Eletroforética , Genes Reporter , Fatores de Transcrição de Choque Térmico
14.
J Biol Chem ; 287(52): 43840-52, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23105094

RESUMO

Catestatin (CST), a chromogranin A (CHGA)-derived peptide, is a potent inhibitor of catecholamine release from adrenal chromaffin cells and postganglionic sympathetic axons. We re-sequenced the CST region of CHGA in an Indian population (n = 1010) and detected two amino acid substitution variants: G364S and G367V. Synthesized CST variant peptides (viz. CST-Ser-364 and CST-Val-367) were significantly less potent than the wild type peptide (CST-WT) to inhibit nicotine-stimulated catecholamine secretion from PC12 cells. Consistently, the rank-order of blockade of nicotinic acetylcholine receptor (nAChR)-stimulated inward current and intracellular Ca(2+) rise by these peptides in PC12 cells was: CST-WT > CST-Ser-364 > CST-Val-367. Structural analysis by CD spectroscopy coupled with molecular dynamics simulations revealed the following order of α-helical content: CST-WT > CST-Ser-364 > CST-Val-367; docking of CST peptides onto a major human nAChR subtype and molecular dynamics simulations also predicted the above rank order for their binding affinity with nAChR and the extent of occlusion of the receptor pore, providing a mechanistic basis for differential potencies. The G364S polymorphism was in strong linkage disequilibrium with several common CHGA genetic variations. Interestingly, the Ser-364 allele (detected in ∼15% subjects) was strongly associated with profound reduction (up to ∼2.1-fold) in plasma norepinephrine/epinephrine levels consistent with the diminished nAChR desensitization-blocking effect of CST-Ser-364 as compared with CST-WT. Additionally, the Ser-364 allele showed strong associations with elevated levels of plasma triglyceride and glucose levels. In conclusion, a common CHGA variant in an Indian population influences several biochemical parameters relevant to cardiovascular/metabolic disorders.


Assuntos
Alelos , Doenças Cardiovasculares , Cromogranina A , Doenças Metabólicas , Fragmentos de Peptídeos , Locos de Características Quantitativas , Adulto , Animais , Glicemia/metabolismo , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Cromogranina A/química , Cromogranina A/genética , Cromogranina A/metabolismo , Cromogranina A/farmacologia , Dicroísmo Circular , Epinefrina/metabolismo , Feminino , Humanos , Índia , Masculino , Doenças Metabólicas/sangue , Doenças Metabólicas/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Norepinefrina/metabolismo , Células PC12 , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Estrutura Secundária de Proteína , Ratos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Triglicerídeos/sangue
15.
J Cell Sci ; 125(Pt 9): 2323-37, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22357947

RESUMO

Catestatin (CST), a chromogranin-A-derived peptide, is a potent endogenous inhibitor of the neuronal nicotinic acetylcholine receptor (nAChR). It exerts an anti-hypertensive effect by acting as a 'physiological brake' on transmitter release into the circulation. However, the mechanism of interaction of CST with nAChR is only partially understood. To unravel molecular interactions of the wild-type human CST (CST-WT) as well as its naturally occurring variants (CST-364S and CST-370L, which have Gly→Ser and Pro→Leu substitutions, respectively) with the human α3ß4 nAChR, we generated a homology-modeled human α3ß4 nAChR structure and solution structures of CST peptides. Docking and molecular dynamics simulations showed that ~90% of interacting residues were within 15 N-terminal residues of CST peptides. The rank order of binding affinity of these peptides with nAChR was: CST-370L>CST-WT>CST-364S; the extent of occlusion of the receptor pore by these peptides was also in the same order. In corroboration with computational predictions, circular dichroism analysis revealed significant differences in global structures of CST peptides (e.g. the order of α-helical content was: CST-370L>CST-WT>CST-364S). Consistently, CST peptides blocked various stages of nAChR signal transduction, such as nicotine- or acetylcholine-evoked inward current, rise in intracellular Ca(2+) and catecholamine secretion in or from neuron-differentiated PC12 cells, in the same rank order. Taken together, this study shows molecular interactions between human CST peptides and human α3ß4 nAChR, and demonstrates that alterations in the CST secondary structure lead to the gain of potency for CST-370L and loss of potency for CST-364S. These findings have implications for understanding the nicotinic cholinergic signaling in humans.


Assuntos
Anti-Hipertensivos/metabolismo , Cromogranina A/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Receptores Nicotínicos/química , Transdução de Sinais/efeitos dos fármacos , Acetilcolina/farmacologia , Substituição de Aminoácidos , Animais , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/farmacologia , Sítios de Ligação , Cálcio/metabolismo , Catecolaminas/metabolismo , Cromogranina A/síntese química , Cromogranina A/farmacologia , Dicroísmo Circular , Humanos , Simulação de Dinâmica Molecular , Nicotina/farmacologia , Células PC12 , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Ratos , Receptores Nicotínicos/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
16.
PLoS One ; 6(1): e16661, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21304971

RESUMO

3-Hydroxy-3-methylglutaryl-coenzyme A [HMG-CoA] reductase gene (Hmgcr) is a susceptibility gene for essential hypertension. Sequencing of the Hmgcr locus in genetically hypertensive BPH (blood pressure high), genetically hypotensive BPL (blood pressure low) and genetically normotensive BPN (blood pressure normal) mice yielded a number of single nucleotide polymorphisms (SNPs). BPH/BPL/BPN Hmgcr promoter-luciferase reporter constructs were generated and transfected into liver HepG2, ovarian CHO, kidney HEK-293 and neuronal N2A cells for functional characterization of the promoter SNPs. The BPH-Hmgcr promoter showed significantly less activity than the BPL-Hmgcr promoter under basal as well as nicotine/cholesterol-treated conditions. This finding was consistent with lower endogenous Hmgcr expression in liver and lower plasma cholesterol in BPH mice. Transfection experiments using 5'-promoter deletion constructs (strategically made to assess the functional significance of each promoter SNP) and computational analysis predicted lower binding affinities of transcription factors c-Fos, n-Myc and Max with the BPH-promoter as compared to the BPL-promoter. Corroboratively, the BPH promoter-luciferase reporter construct co-transfected with expression plasmids of these transcription factors displayed less pronounced augmentation of luciferase activity than the BPL construct, particularly at lower amounts of transcription factor plasmids. Electrophoretic mobility shift assays also showed diminished interactions of the BPH promoter with HepG2 nuclear proteins. Taken together, this study provides mechanistic basis for the differential Hmgcr expression in these mouse models of human essential hypertension and have implications for better understanding the role of this gene in regulation of blood pressure.


Assuntos
Hidroximetilglutaril-CoA Redutases/genética , Hipertensão/genética , Polimorfismo Genético , Regiões Promotoras Genéticas/genética , Animais , Pressão Sanguínea , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único
17.
Nanotechnology ; 21(25): 255704, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20516586

RESUMO

Improvement of the specificity and efficiency of the polymerase chain reaction (PCR) by nanoparticles is an emerging area of research. We observed that TiO(2) nanoparticles of approximately 25 nm diameter caused significant enhancement of PCR efficiency for various types of templates (namely plasmid DNA, genomic DNA and complementary DNA). By a series of experiments, the optimal TiO(2) concentration was determined to be 0.4 nM, which resulted in up to a seven-fold increase in the amount of PCR product. As much as 50% reduction in overall reaction time (by reduction of the number of cycles and the time periods of cycles) was also achieved by utilizing TiO(2) nanoparticles without compromising the PCR yield. Investigations of the mechanism of such PCR enhancement by simulations using the 'Fluent K epsilon turbulent model' provided evidence of faster heat transfer in the presence of TiO(2) nanoparticles. Consistent with these findings, TiO(2) nanoparticles were observed to augment the denaturation of genomic DNA, indicating more efficient thermal conductivity through the reaction buffer. TiO(2) nanoparticle-assisted PCR may be useful for profound reduction of the overall PCR reaction period and for enhanced amplification of DNA amplicons from a variety of samples, including GC-rich templates that are often observed to yield unsatisfactory results.


Assuntos
Nanopartículas Metálicas/química , Reação em Cadeia da Polimerase/métodos , Titânio/química , Animais , Simulação por Computador , DNA/química , DNA/metabolismo , Eletroforese em Gel de Ágar , Humanos , Camundongos , Desnaturação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/metabolismo , Temperatura
18.
Cell Mol Life Sci ; 67(6): 861-74, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19943077

RESUMO

Chromogranin A (CHGA) is ubiquitously expressed in secretory cells of the endocrine, neuroendocrine, and neuronal tissues. Although this protein has long been known as a marker for neuroendocrine tumors, its role in cardiovascular disease states including essential hypertension (EH) has only recently been recognized. It acts as a prohormone giving rise to bioactive peptides such as vasostatin-I (human CHGA(1-76)) and catestatin (human CHGA(352-372)) that exhibit several cardiovascular regulatory functions. CHGA is over-expressed but catestatin is diminished in EH. Moreover, genetic variants in the promoter, catestatin, and 3'-untranslated regions of the human CHGA gene alter autonomic activity and blood pressure. Consistent with these findings, targeted ablation of this gene causes severe arterial hypertension and ventricular hypertrophy in mice. Transgenic expression of the human CHGA gene or exogenous administration of catestatin restores blood pressure in these mice. Thus, the accumulated evidence establishes CHGA as a novel susceptibility gene for EH.


Assuntos
Cromogranina A/genética , Cromogranina A/metabolismo , Hipertensão/genética , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA