Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(5): e1011281, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743788

RESUMO

CgHog1, terminal kinase of the high-osmolarity glycerol signalling pathway, orchestrates cellular response to multiple external stimuli including surplus-environmental iron in the human fungal pathogen Candida glabrata (Cg). However, CgHog1 substrates remain unidentified. Here, we show that CgHog1 adversely affects Cg adherence to host stomach and kidney epithelial cells in vitro, but promotes Cg survival in the iron-rich gastrointestinal tract niche. Further, CgHog1 interactome and in vitro phosphorylation analysis revealed CgSub2 (putative RNA helicase) to be a CgHog1 substrate, with CgSub2 also governing iron homeostasis and host adhesion. CgSub2 positively regulated EPA1 (encodes a major adhesin) expression and host adherence via its interactor CgHtz1 (histone H2A variant). Notably, both CgHog1 and surplus environmental iron had a negative impact on CgSub2-CgHtz1 interaction, with CgHTZ1 or CgSUB2 deletion reversing the elevated adherence of Cghog1Δ to epithelial cells. Finally, the surplus-extracellular iron led to CgHog1 activation, increased CgSub2 phosphorylation, elevated CgSub2-CgHta (canonical histone H2A) interaction, and EPA1 transcriptional activation, thereby underscoring the iron-responsive, CgHog1-induced exchange of histone partners of CgSub2. Altogether, our work mechanistically defines how CgHog1 couples Epa1 adhesin expression with iron abundance, and point towards specific chromatin composition modification programs that probably aid fungal pathogens align their adherence to iron-rich (gut) and iron-poor (blood) host niches.


Assuntos
Candida glabrata , Adesão Celular , Células Epiteliais , Proteínas Fúngicas , Histonas , Candida glabrata/genética , Candida glabrata/metabolismo , Humanos , Histonas/metabolismo , Histonas/genética , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Adesão Celular/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Fosforilação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Ferro/metabolismo , Regulação Fúngica da Expressão Gênica , Candidíase/microbiologia , Candidíase/genética , Transdução de Sinais
2.
J Fungi (Basel) ; 6(1)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143470

RESUMO

The small ubiquitin-related modifier (SUMO) protein is an important component of the post-translational protein modification systems in eukaryotic cells. It is known to modify hundreds of proteins involved in diverse cellular processes, ranging from nuclear pore dynamics to signal transduction pathways. Owing to its reversible nature, the SUMO-conjugation of proteins (SUMOylation) holds a prominent place among mechanisms that regulate the functions of a wide array of cellular proteins. The dysfunctional SUMOylation system has been associated with many human diseases, including neurodegenerative and autoimmune disorders. Furthermore, the non-pathogenic yeast Saccharomyces cerevisiae has served as an excellent model to advance our understanding of enzymes involved in SUMOylation and proteins modified by SUMOylation. Taking advantage of the tools and knowledge obtained from the S. cerevisiae SUMOylation system, research on fungal SUMOylation is beginning to gather pace, and new insights into the role of SUMOylation in the pathobiology of medically important fungi are emerging. Here, we summarize the known information on components of the SUMOylation machinery, and consequences of overexpression or deletion of these components in the human pathogenic fungi, with major focus on two prevalent Candida bloodstream pathogens, C. albicans and C. glabrata. Additionally, we have identified SUMOylation components, through in silico analysis, in four medically relevant fungi, and compared their sequence similarity with S. cerevisiae counterparts. SUMOylation modulates the virulence of C. albicans and C. glabrata, while it is required for conidia production in Aspergillus nidulans and A. flavus. In addition to highlighting these recent developments, we discuss how SUMOylation fine tunes the expression of virulence factors, and influences survival of fungal cells under diverse stresses in vitro and in the mammalian host.

3.
Microorganisms ; 7(2)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704135

RESUMO

Candida glabrata is an opportunistic human fungal pathogen that causes superficial mucosal and life-threatening bloodstream infections in individuals with a compromised immune system. Evolutionarily, it is closer to the non-pathogenic yeast Saccharomyces cerevisiae than to the most prevalent Candida bloodstream pathogen, C. albicans. C. glabrata is a haploid budding yeast that predominantly reproduces clonally. In this review, we summarize interactions of C. glabrata with the host immune, epithelial and endothelial cells, and the ingenious strategies it deploys to acquire iron and phosphate from the external environment. We outline various attributes including cell surface-associated adhesins and aspartyl proteases, biofilm formation and stress response mechanisms, that contribute to the virulence of C. glabrata. We further discuss how, C. glabrata, despite lacking morphological switching and secreted proteolytic activity, is able to disarm macrophage, dampen the host inflammatory immune response and replicate intracellularly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA