Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(9): 10498-10516, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463273

RESUMO

The purpose of the current research is to formulate a smart drug delivery system for solubility enhancement and sustained release of hydrophobic drugs. Drug solubility-related challenges constitute a significant concern for formulation scientists. To address this issue, a recent study focused on developing PEG-g-poly(MAA) copolymeric nanogels to enhance the solubility of olmesartan, a poorly soluble drug. The researchers employed a free radical polymerization technique to formulate these nanogels. Nine formulations were formulated. The newly formulated nanogels underwent comprehensive tests, including physicochemical assessments, dissolution studies, solubility evaluations, toxicity investigations, and stability examinations. Fourier transform infrared (FTIR) investigations confirmed the successful encapsulation of olmesartan within the nanogels, while thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) studies verified their thermal stability. Scanning electron microscopy (SEM) images revealed the presence of pores on the surface of the nanogels, facilitating water penetration and promoting rapid drug release. Moreover, powder X-ray diffraction (PXRD) studies indicated that the prepared nanogels exhibited an amorphous structure. The nanogel carrier system led to a significant enhancement in olmesartan's solubility, achieving a remarkable 12.3-fold increase at pH 1.2 and 13.29-fold rise in phosphate buffer of pH 6.8 (NGP3). Significant swelling was observed at pH 6.8 compared to pH 1.2. Moreover, the formulated nexus is nontoxic and biocompatible and depicts considerable potential for delivery of drugs and protein as well as heat-sensitive active moieties.

2.
Scientifica (Cairo) ; 2022: 3552491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119646

RESUMO

Sauropus androgynus (L.) Merr., in the Indonesian local name known as "Katuk," is a tropical shrub plant of the family Euphorbiaceae. Based on genus and chemotaxonomic approaches, as well as in vitro testing of Plasmodium falciparum, leaves of S. androgynus are presumed to have an active compound content as an antimalarial. The current study aims to investigate the antimalarial activity of 96% ethanol extract and fractions of S. androgynus leaves. The ethanolic extract was fractionated using the vacuum liquid chromatography (VLC) method with three solvents of different polarities (n-hexane, chloroform, and 96% ethanol). The fraction obtained was then evaluated for antimalarial activity against P. falciparum 3D7 strain. The ethanolic extract was evaluated for antimalarial suppressive and prophylactic activity against P. berghei-infected mice, as well as inhibitory activity against the heme detoxification process in vitro. Fractionation of ethanolic extract resulted in seven combined fractions, with the most active fraction being FV (50% inhibitory concentration (IC50) = 2.042 µg/mL). The ethanolic extract showed good parasitic suppressive (therapeutic) activity with a median effective dose (ED50) value of 15.35 mg/kg body weight. In a prophylactic test, ethanolic extract showed parasite growth inhibitory activity of 67.74 ± 9.21% after the administration of 400 mg/kg body weight for 4 days before infection, and 65.30 ± 10.44% after the administration of 200 mg/kg body weight for 8 consecutive days (4 days before and after infection). The ethanolic extract also showed an effect in inhibiting the formation of ß-hematin of about 26.87-79.36% at a concentration of 0.1-4 mg/mL and an IC50 value of 0.479 mg/mL. The S. androgynus leaves were shown to have antimalarial activity in vitro and in vivo, where ethanolic extract were more active compared with the fraction obtained. The antimalarial properties of the extract showed a higher suppressive activity than prophylactic activity.

3.
Anticancer Agents Med Chem ; 21(11): 1403-1412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33176666

RESUMO

Cancer is the foremost cause of death, and it supports the need for the identification of novel anticancer drugs to improve the efficacy of current-therapy. While the synthetic anticancer drug is associated with numerous side effects. Hence the plant active or phytoconstituents are in high demand for the treatment of cancer due to minimum side effects. But the polar nature of phytoconstituents hindered the absorption of the drug and lowered the therapeutic efficacy. The plant activity incorporated into Phyto-phospholipid Complexation can enhance bioavailability and improved therapeutic efficacy. In this review article, advantages, limitation and application of Phyto-phospholipid complexes have been illustrated. The article highlights the application of Phyto-phospholipid complexes as a promising drug carrier system to treat cancer.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Fosfolipídeos/farmacologia , Compostos Fitoquímicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Disponibilidade Biológica , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-33153426

RESUMO

The article has been withdrawn by the Editorial office of the journal Anti-Cancer Agents in Medicinal Chemistry because of the lack of clarity and obscurity in the content regarding language. Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused. The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policiesmain.php Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

5.
Ann Hepatol ; 17(3): 482-489, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29735797

RESUMO

INTRODUCTION AND AIM: Aegle marmelos is an important traditional herbal medicine used in India. The dietary inclusion of the plant has never exposed earlier for its hepatoprotective activity. This study aimed to investigate the modulator efficacy of dietary inclusion of Aegle marmelos against Cisplatin - induced hepatotoxicity in Wistar albino rats. MATERIAL AND METHODS: Animals were divided into five different groups; Group I was given basal diets only, Group II was fed basal diets with Aegle marmelos in 4% concentration, while Group III was fed basal diets co-administered with Cisplatin. Group IV and V were administered diets containing 2 and 4% Aegle marmelos respectively, for 27 days prior to Cisplatin administration. Cisplatin was administered to the rats for 3 days leads to a reduction in the activities of the antioxidant enzymes like lipid peroxidation (LPO) and endogenous antioxidant systems such as reduced superoxide dismutase (SOD), glutathione (GSH) and catalase in liver homogenate caused to produce the impairment of hepatic functions. RESULTS: The administration of fruit part of Aegle marmelos to Wistar rats showed a significant fall in the elevated Lipid peroxidation, superoxide dismutase, glutathione and catalase concentration, moreover, it diminished the increased serum level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), acid phosphatase (ACP) and bilirubin. CONCLUSIONS: We can conclude that the hepatoprotective activity of Aegle marmelos was due to its antioxidant effect as evidenced by increasing activity of antioxidant enzymes with enhanced hepatic function and significantly changed the physiological parameters.


Assuntos
Aegle , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cisplatino , Dieta , Frutas , Fígado , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antioxidantes/metabolismo , Bilirrubina/sangue , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Enzimas/sangue , Peroxidação de Lipídeos , Fígado/enzimologia , Fígado/patologia , Estresse Oxidativo , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA