Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Front Pharmacol ; 15: 1392209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948472

RESUMO

Amdizalisib, also named HMPL-689, a novel selective and potent PI3Kδ inhibitor, is currently under Phase II clinical development in China for treating hematological malignancies. The preclinical pharmacokinetics (PK) of amdizalisib were extensively characterized in vitro and in vivo to support the further development of amdizalisib. We characterized the plasma protein binding, blood-to-plasma partition ratio, cell permeability, hepatic microsomal metabolic stability, and drug-drug interaction potential of amdizalisib using in vitro experiments. In vivo PK assessment was undertaken in mice, rats, dogs, and monkeys following a single intravenous or oral administration of amdizalisib. The tissue distribution and excretion of amdizalisib were evaluated in rats. The PK parameters (CL and Vss) of amdizalisib in preclinical species (mice, rats, dogs, and monkeys) were utilized for the human PK projection using the allometric scaling (AS) approach. Amdizalisib was well absorbed and showed low-to-moderate clearance in mice, rats, dogs, and monkeys. It had high cell permeability without P-glycoprotein (P-gp) or breast cancer resistance protein (BCRP) substrate liability. Plasma protein binding of amdizalisib was high (approximately 90%). It was extensively distributed but with a low brain-to-plasma exposure ratio in rats. Amdizalisib was extensively metabolized in vivo, and the recovery rate of the prototype drug was low in the excreta. Amdizalisib and/or its metabolites were primarily excreted via the bile and urine in rats. Amdizalisib showed inhibition potential on P-gp but not on BCRP and was observed to inhibit CYP2C8 and CYP2C9 with IC50 values of 30.4 and 10.7 µM, respectively. It exhibited induction potential on CYP1A2, CYP2B6, CYP3A4, and CYP2C9. The preclinical data from these ADME studies demonstrate a favorable pharmacokinetic profile for amdizalisib, which is expected to support the future clinical development of amdizalisib as a promising anti-cancer agent.

2.
Eur J Med Chem ; 276: 116694, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047607

RESUMO

As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.

3.
Eur J Med Chem ; 276: 116678, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39029337

RESUMO

Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.

4.
Biomed Pharmacother ; 176: 116936, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878685

RESUMO

Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.


Assuntos
Cardiolipinas , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Cardiolipinas/metabolismo , Fosfolipases A2 Secretórias/metabolismo
5.
Bioorg Med Chem ; 107: 117762, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759254

RESUMO

Honokiol, derived from Magnolia officinalis (a traditional Chinese medicine), has been reported to have anticancer activity. Here, a series of novel honokiol thioethers bearing a 1,3,4-oxadiazole moiety were prepared and evaluated for their anticancer activities against three types of digestive system tumor cells. Biological evaluation showed that honokiol derivative 3k exhibited the best antiproliferative activity against HCT116 cells with an IC50 value of 6.1 µmol/L, superior to the reference drug 5-fluorouracil (IC50: 9.63 ± 0.27 µmol/L). The structure-activity relationships (SARs) indicated that the introduction of -(4-NO2)Ph, 3-pyridyl, -(2-F)Ph, -(4-F)Ph, -(3-F)Ph, -(4-Cl)Ph, and -(3-Cl)Ph groups was favorable for enhancing the anticancer activity of the title honokiol thioethers. Further study revealed that honokiol thioether 3k can well inhibit the proliferation of colon cancer cells HCT116, arresting the cells in G1 phase and inducing cell death. Moreover, a preliminary mechanism study indicated that 3k directly inhibits the transcription and expression of YAP protein without activating the Hippo signaling pathway. Thus, honokiol thioether 3k could be deeply developed for the development of honokiol-based anticancer candidates.


Assuntos
Compostos de Bifenilo , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Lignanas , Proteínas de Sinalização YAP , Humanos , Lignanas/farmacologia , Lignanas/química , Lignanas/síntese química , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Proteínas de Sinalização YAP/metabolismo , Estrutura Molecular , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Sulfetos/química , Sulfetos/farmacologia , Sulfetos/síntese química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/síntese química , Relação Dose-Resposta a Droga , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Compostos Alílicos , Fenóis
6.
Eur J Med Chem ; 265: 116118, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181651

RESUMO

In this work, we utilized the molecular hybridization strategy to design and synthesize novel 1,2,3-triazole benzothiazole derivatives K1-26. The antiproliferative activities against MGC-803, Kyse30 and HCT-116 cells were explored, and their structure-activity relationship were preliminarily conducted and summarized. Among them, compound K18, exhibited the strongest proliferation inhibitory activity, with esophageal cancer cells Kyse30 and EC-109 being the most sensitive to its effects (IC50 values were 0.042 and 0.038 µM, respectively). Compound K18 effectively inhibited tubulin polymerization (IC50 = 0.446 µM), thereby hindering tubulin polymerize into filamentous microtubules in Kyse30 and EC-109 cells. Additionally, compound K18 induced the degradation of oncogenic protein YAP via the UPS pathway. Based on these dual molecular-level effects, compound K18 could induce G2/M phase arrest and cell apoptosis in Kyse30 and EC-109 cells, as well as regulate the expression levels of cell cycle and apoptosis-related proteins. In summary, our findings highlight a novel 1,2,3-triazole benzothiazole derivative K18, which possesses significant potential for treating esophageal cancers.


Assuntos
Antineoplásicos , Neoplasias Esofágicas , Melfalan , gama-Globulinas , Humanos , Moduladores de Tubulina , Tubulina (Proteína)/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Relação Estrutura-Atividade , Benzotiazóis/farmacologia , Triazóis/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Polimerização , Estrutura Molecular
7.
Eur J Med Chem ; 267: 116166, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38281455

RESUMO

Following nearly two decades of development, significant advancements have been achieved in PROTAC technology. As of the end of 2022, more than 20 drugs have entered clinical trials, with ARV-471 targeting estrogen receptor (ER) showing remarkable progress by entering phase III clinical studies. In 2022, significant progress has been made on multiple targets. The first reversible covalent degrader designed to target the KRASG12C mutant protein, based on cyclopropionamide, has been reported. Additionally, the activity HDCA1 degrader surpassed submicromolar levels during the same year. A novel FEM1B covalent ligand called EN106 was also discovered, expanding the range of available ligands. Furthermore, the first PROTAC drug targeting SOS1 was reported. Additionally, the first-in-class degraders that specifically target BRD4 isoforms (BRD4 L and BRD4 S) have recently been reported, providing a valuable tool for further investigating the biological functions of these isoforms. Lastly, a breakthrough was also achieved with the first degrader targeting both CDK9 and Cyclin T1. In this review, we aimed to update the PROTAC degraders as potential anticancer agents covering articles published in 2022. The design strategies, degradation effects, and anticancer activities were highlighted, which might provide an updated sight to develop novel PROTAC degraders with great potential as anticancer agents as well as favorable drug-like properties.


Assuntos
Antineoplásicos , Proteínas Nucleares , Fatores de Transcrição , Antineoplásicos/farmacologia , Antagonistas de Estrogênios , Isoformas de Proteínas , Proteólise
8.
Circulation ; 149(9): 684-706, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-37994595

RESUMO

BACKGROUND: The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct diabetic cardiomyopathy progression. Herein, we assessed the potential role and therapeutic value of USP28 (ubiquitin-specific protease 28) on the metabolic vulnerability of diabetic cardiomyopathy. METHODS: The type 2 diabetes mouse model was established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. Cardiac-specific knockout of USP28 in the db/db background mice was generated by crossbreeding db/m and Myh6-Cre+/USP28fl/fl mice. Recombinant adeno-associated virus serotype 9 carrying USP28 under cardiac troponin T promoter was injected into db/db mice. High glucose plus palmitic acid-incubated neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing, immunoprecipitation and mass spectrometry analysis, protein pull-down, chromatin immunoprecipitation sequencing, and chromatin immunoprecipitation assay. RESULTS: Microarray profiling of the UPS (ubiquitin-proteasome system) on the basis of db/db mouse hearts and diabetic patients' hearts demonstrated that the diabetic ventricle presented a significant reduction in USP28 expression. Diabetic Myh6-Cre+/USP28fl/fl mice exhibited more severe progressive cardiac dysfunction, lipid accumulation, and mitochondrial disarrangement, compared with their controls. On the other hand, USP28 overexpression improved systolic and diastolic dysfunction and ameliorated cardiac hypertrophy and fibrosis in the diabetic heart. Adeno-associated virus serotype 9-USP28 diabetic mice also exhibited less lipid storage, reduced reactive oxygen species formation, and mitochondrial impairment in heart tissues than adeno-associated virus serotype 9-null diabetic mice. As a result, USP28 overexpression attenuated cardiac remodeling and dysfunction, lipid accumulation, and mitochondrial impairment in high-fat diet/streptozotocin-induced type 2 diabetes mice. These results were also confirmed in neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. RNA sequencing, immunoprecipitation and mass spectrometry analysis, chromatin immunoprecipitation assays, chromatin immunoprecipitation sequencing, and protein pull-down assay mechanistically revealed that USP28 directly interacted with PPARα (peroxisome proliferator-activated receptor α), deubiquitinating and stabilizing PPARα (Lys152) to promote Mfn2 (mitofusin 2) transcription, thereby impeding mitochondrial morphofunctional defects. However, such cardioprotective benefits of USP28 were largely abrogated in db/db mice with PPARα deletion and conditional loss-of-function of Mfn2. CONCLUSIONS: Our findings provide a USP28-modulated mitochondria homeostasis mechanism that involves the PPARα-Mfn2 axis in diabetic hearts, suggesting that USP28 activation or adeno-associated virus therapy targeting USP28 represents a potential therapeutic strategy for diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Células-Tronco Pluripotentes Induzidas , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Ratos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Lipídeos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Estreptozocina/metabolismo , Estreptozocina/uso terapêutico , Ubiquitina Tiolesterase/análise , Ubiquitina Tiolesterase/metabolismo
9.
J Pharmacol Exp Ther ; 388(1): 156-170, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918855

RESUMO

Spleen tyrosine kinase (Syk) is an intracellular tyrosine kinase involved in the signal transduction in immune cells mainly. Its aberrant regulation is associated with diversified allergic disorders, autoimmune diseases and B cell malignancies. Therefore, inhibition of Syk is considered a reasonable approach to treat autoimmune/inflammatory diseases and B cell malignancies. Here we described the preclinical characterization of sovleplenib, a novel, highly potent and selective, oral Syk inhibitor, in several rodent autoimmune disease models. Sovleplenib potently inhibited Syk activity in a recombinant enzymatic assay and Syk-dependent cellular functions in various immune cell lines and human whole blood in vitro. Furthermore, sovleplenib, by oral administration, demonstrated strong in vivo efficacies in murine models of immune thrombocytopenia (ITP), autoimmune hemolytic anemia (AIHA), and chronic graft-versus-host disease (cGVHD), and a rat model of collagen induced arthritis (CIA) respectively, in a dose-dependent manner. Collectively, these results clearly supported sovleplenib as a therapeutic agent in the treatment of autoimmune diseases. Sovleplenib is being globally developed for ITP (Phase III, NCT05029635, Phase Ib/II, NCT03951623), wAIHA (Phase II/III, NCT05535933) and B-cell lymphoma (Phase I, NCT02857998, NCT03779113). SIGNIFICANCE STATEMENT: Syk is a key mediator of signaling pathways downstream of a wide array of receptors important for immune functions, including the B cell receptor, immunoglobulin receptors bearing Fc receptors. Inhibition of Syk could provide a novel therapeutic approach for autoimmune diseases and hematologic malignancies. The manuscript describes the preclinical pharmacology characterization of sovleplenib, a novel Syk inhibitor, in enzymatic and cellular assays in vitro and several murine autoimmune disease models in vivo.


Assuntos
Doenças Autoimunes , Neoplasias , Ratos , Camundongos , Humanos , Animais , Proteínas Tirosina Quinases , Quinase Syk , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Doenças Autoimunes/tratamento farmacológico , Neoplasias/tratamento farmacológico
10.
Eur J Med Chem ; 265: 116079, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38150962

RESUMO

In this work, a series of novel coumarin-based derivatives were designed and synthesized as tubulin polymerization inhibitors targeting the colchicine binding site, and their antiproliferative activities against MGC-803, HCT-116 and KYSE30 cells were evaluated. Among them, the compound I-3 (MY-1442) bearing a 6-methoxy-1,2,3,4-tetrahydroquinoline group exhibited most potent inhibitory activities on MGC-803 (IC50 = 0.034 µM), HCT-116 (IC50 = 0.081 µM) and KYSE30 cells (IC50 = 0.19 µM). Further mechanism studies demonstrated that compound I-3 (MY-1442) could directly bind to the colchicine binding site of ß-tubulin to inhibit tubulin polymerization and microtubules at the cellular level. The results of molecular docking indicated there were well binding interactions between compound I-3 (MY-1442) and the colchicine binding site of ß-tubulin. Compound I-3 (MY-1442) also exhibited effective anti-proliferation, pro-apoptosis, and anti-migration abilities against gastric cancer cells MGC-803. Additionally, compound I-3 (MY-1442) could regulate the expression of cell cycle- and apoptosis-related proteins. Importantly, compound I-3 (MY-1442) could significantly inhibit tumor growth in the MGC-803 xenograft tumor model with a TGI rate of 65.5 % at 30 mg/kg/day. Taken together, this work suggested that the coumarin skeleton exhibited great potential to be a key pharmacophore of tubulin polymerization inhibitors for the discovery of anticancer agents.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Colchicina/farmacologia , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Simulação de Acoplamento Molecular , Neoplasias Gástricas/tratamento farmacológico , Polimerização , Proliferação de Células , Sítios de Ligação , Cumarínicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais
11.
Bioorg Chem ; 141: 106895, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797456

RESUMO

In this study, twenty-one novel 2,4-diaminopyrimidine cinnamyl derivatives as inhibitors targeting FAK were designed and synthesized based on the structure of TAE-226, and the inhibitory effects of these compounds on both the FAK enzyme and three cancer cell lines (MGC-803, HCT-116, and KYSE30) were investigated. Among them, compound 12s displayed potent inhibitory potency on FAK (IC50 = 47 nM), and demonstrated more significant antiproliferative activities in MGC-803, HCT-116 and KYSE30 cells (IC50 values were 0.24, 0.45 and 0.44 µM, respectively) compared to TAE-226. Furthermore, compound 12s significantly inhibited FAK activation leading to the negative regulation of FAK-related signaling pathways such as AKT/mTOR and MAPK signaling pathways. Molecular docking study suggested that compound 12s could well occupy the ATP-binding pocket site of FAK similar to TAE-226. In addition, compound 12s also efficiently inhibited the proliferation, induced apoptosis and cellular senescence in MGC-803 cells. In conclusion, compound 12s emerges a potent FAK inhibitor that could exert potent inhibitory activity against gastric cancer cells.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Relação Estrutura-Atividade , Antineoplásicos/química , Simulação de Acoplamento Molecular , Neoplasias Gástricas/tratamento farmacológico , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases
12.
Eur J Med Chem ; 259: 115673, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37487305

RESUMO

Histone deacetylases, as a new class of anticancer targets, could maintain homeostasis by catalyzing histone deacetylation and play important roles in regulating the expression of target genes. Due to the fact that simultaneous intervention with dual tumor related targets could improve treatment effects, researches on innovative design of dual-target drugs are underway. HDAC is known as a "sensitizer" for the synergistic effects with other anticancer-target drugs because of its flexible structure design. The synergistic effects of HDAC inhibitor and other target inhibitors usually show enhanced inhibitory effects on tumor cells, and also provide new strategies to overcome multidrug resistance. Many research groups have reported that simultaneously inhibiting HDAC and other targets, such as tubulin, EGFR, could enhance the therapeutic effects. The o-aminobenzamide group is often used as a ZBG group in the design of HDAC inhibitors with potent antitumor effects. Given the prolonged inhibitory effects and reduced toxic side effects of HDAC inhibitors using o-aminobenzamide as the ZBG group, the o-aminobenzamide group is expected to become a more promising alternative to hydroxamic acid. In fact, o-aminobenzamide-based dual inhibitors of HDAC with different chemical structures have been extensively prepared and reported with synergistic and enhanced anti-tumor effects. In this work, we first time reviewed the rational design, molecular docking, inhibitory activities and potential application of o-aminobenzamide-based HDAC inhibitors with dual targeting capabilities in cancer therapy, which might provide a reference for developing new and more effective anticancer drugs.


Assuntos
Antineoplásicos , Neoplasias , Inibidores de Histona Desacetilases/química , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Antineoplásicos/química , Tubulina (Proteína) , Proliferação de Células , Neoplasias/tratamento farmacológico
13.
J Enzyme Inhib Med Chem ; 38(1): 2237701, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37489043

RESUMO

In this work, a series of novel arylamide derivatives containing piperazine moiety were designed and synthesised as tubulin polymerisation inhibitors. Among 25 target compounds, compound 16f (MY-1121) exhibited low nanomolar IC50 values ranging from 0.089 to 0.238 µM against nine human cancer cells. Its inhibitory effects on liver cancer cells were particularly evident with IC50 values of 89.42 and 91.62 nM for SMMC-7721 and HuH-7 cells, respectively. Further mechanism studies demonstrated that compound 16f (MY-1121) could bind to the colchicine binding site of ß-tubulin and directly act on ß-tubulin, thus inhibiting tubulin polymerisation. Additionally, compound 16f (MY-1121) could inhibit colony forming ability, cause morphological changes, block cell cycle arrest at the G2 phase, induce cell apoptosis, and regulate the expression of cell cycle and cell apoptosis related proteins in liver cancer cells. Overall, the promising bioactivities of compound 16f (MY-1121) make the novel arylamide derivatives have the value for further development as tubulin polymerisation inhibitors with potent anticancer activities.


Assuntos
Neoplasias Hepáticas , Tubulina (Proteína) , Humanos , Apoptose , Sítios de Ligação , Piperazina , Moduladores de Tubulina
14.
Bioorg Chem ; 139: 106684, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37356337

RESUMO

The microtubule system plays an important role in the mitosis and growth of eukaryotic cells, and it is considered as an appealing and highly successful molecular target for cancer treatment. In fact, microtubule targeting agents, such as paclitaxel and vinblastine, have been approved by FDA for tumor therapy, which have achieved significant therapeutic effects and sales performance. At present, microtubule targeting agents mainly include microtubule-destabilizing agents, microtubule-stabilizing agents, and a few tubulin degradation agents. Although there are few reports about tubulin degradation agents at present, tubulin degradation agents show great potential in overcoming multidrug resistance and reducing neurotoxicity. In addition, some natural drugs could specifically degrade tubulin in tumor cells, but have no effect in normal cells, thus showing a good biosafety profile. Therefore, tubulin degradation agents might exhibit a better application. Currently, some small molecules have been designed to promote tubulin degradation with potent antiproliferative activities, showing the potential for cancer treatment. In this work, we reviewed the reports on tubulin degradation, and focused on the degradation mechanism and important functional groups of chemically synthesized compounds, hoping to provide help for the degradation design of tubulin.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos , Antineoplásicos/química , Vimblastina/metabolismo , Vimblastina/farmacologia , Paclitaxel/metabolismo , Moduladores de Tubulina/química
15.
Bioorg Chem ; 137: 106580, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149948

RESUMO

As a class of microtubule targeting agents, colchicine binding site inhibitors (CBSIs) are considered as promising drug candidates for cancer therapy. However, due to adverse reactions, there are currently no CBSIs approved by FDA for cancer treatment. Therefore, extensive efforts are still encouraged to find novel CBSIs with different chemical structures and better anticancer efficacies. In this work, we designed and synthesized a new coumarin-dihydroquinoxalone derivative, MY-673, and evaluated its anticancer potency in vitro and in vivo. We confirmed that MY-673 was a potent CBSI that it not only inhibited tubulin polymerization, but also exhibited significant inhibitory potency on the growth of 13 cancer cells with IC50 values from 11.7 nM to 395.9 nM. Based on the results of kinase panel screening, MY-673 could inhibit ERK (extracellular regulated protein kinases) pathways-related kinases. We further confirmed that MY-673 could inhibit ERK signaling pathway in MGC-803 and HGC-27 cells, and then affected the expression level of SMAD4 protein in TGF-ß (transforming growth factor ß) /SMAD (small mother against decapentaplegic) signaling pathway using the western blotting assay. In addition, compound MY-673 could effectively inhibit cell proliferation, migration and induce cell apoptosis. We also further confirmed the in vivo efficacy of MY-673 in inhibiting tumor growth using the MGC-803 xenograft tumor model. At 20 mg/kg, the TGI rate was 85.9%, and it did not cause obvious toxicity to the main organs of mice. Together, the results we report here indicated that MY-673 was a promising CBSI for cancer treatment, which was capable of inhibiting the ERK pathway with potent antiproliferative activities in vitro and in vivo.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Sistema de Sinalização das MAP Quinases , Tubulina (Proteína)/metabolismo , Microtúbulos , Colchicina/metabolismo , Proliferação de Células , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
16.
Eur J Med Chem ; 251: 115228, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36881982

RESUMO

As an important epigenetic regulator, histone lysine specific demethylase 1 (LSD1) has become an attractive target for the discovery of anticancer agents. In this work, a series of tranylcypromine-based derivatives were designed and synthesized. Among them, compound 12u exhibited the most potent inhibitory potency on LSD1 (IC50 = 25.3 nM), and also displayed good antiproliferative effects on MGC-803, KYSE450 and HCT-116 cells with IC50 values of 14.3, 22.8 and 16.3 µM, respectively. Further studies revealed that compound 12u could directly act on LSD1 and inhibit LSD1 in MGC-803 cells, thereby significantly increasing the expression levels of mono-/bi-methylation of H3K4 and H3K9. In addition, compound 12u could induce apoptosis and differentiation, inhibit migration and cell stemness in MGC-803 cells. All these findings suggested that compound 12u was an active tranylcypromine-based derivative as a LSD1 inhibitor that inhibited gastric cancer.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Tranilcipromina/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Antineoplásicos/farmacologia , Histona Desmetilases/metabolismo , Relação Estrutura-Atividade , Proliferação de Células
17.
Eur J Med Chem ; 252: 115281, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36940611

RESUMO

In this work, N-benzylarylamide-dithiocarbamate based derivatives were designed, synthesized, and their biological activities as anticancer agents were explored. Some of the 33 target compounds displayed significant antiproliferative activities with IC50 values at the double-digit nanomolar level. The representative compound I-25 (also named MY-943) not only showed the most effective inhibitory effects on three selected cancer cells MGC-803 (IC50 = 0.017 µM), HCT-116 (IC50 = 0.044 µM) and KYSE450 (IC50 = 0.030 µM), but also exhibited low nanomolar IC50 values from 0.019 to 0.253 µM against the other 11 cancer cells. Compound I-25 (MY-943) effectively inhibited tubulin polymerization and suppressed LSD1 at the enzymatic levels. Compound I-25 (MY-943) could act on the colchicine binding site of ß-tubulin, thus disrupting the construction of cell microtubule network and affecting the mitosis. In addition, compound I-25 (MY-943) could dose-dependently induce the accumulation of H3K4me1/2 (MGC-803 and SGC-7091 cells) and H3K9me2 (SGC-7091 cells). Compound I-25 (MY-943) could induce G2/M phase arrest and cell apoptosis, and suppress migration in MGC-803 and SGC-7901 cells. In addition, compound I-25 (MY-943) significantly modulated the expression of apoptosis- and cycle-related proteins. Furthermore, the binding modes of compound I-25 (MY-943) with tubulin and LSD1 were explored by molecular docking. The results of in vivo anti-gastric cancer assays using in situ tumor models showed that compound I-25 (MY-943) effectively reduced the weight and volume of gastric cancer in vivo without obvious toxicity. All these findings suggested that the N-benzylarylamide-dithiocarbamate based derivative I-25 (MY-943) was an effective dual inhibitor of tubulin polymerization and LSD1 that inhibited gastric cancers.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Tubulina (Proteína)/metabolismo , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Polimerização , Proliferação de Células , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias Gástricas/tratamento farmacológico , Histona Desmetilases/metabolismo , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais
18.
Molecules ; 28(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770809

RESUMO

Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.


Assuntos
Neuroblastoma , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Genes myc , Ciclo Celular/genética , Neuroblastoma/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
19.
Bioorg Chem ; 133: 106425, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36801788

RESUMO

Vascular epidermal growth factor receptor-2 (VEGFR-2), as an important tyrosine transmembrane protein, plays an important role in regulating endothelial cell proliferation and migration, regulating angiogenesis and other biological functions. VEGFR-2 is aberrantly expressed in many malignant tumors, and it is also related to the occurrence, development, and growth of tumors and drug resistance. Currently, there are nine VEGFR-2 targeted inhibitors approved by US.FDA for clinical use as anticancer drugs. Due to the limited clinical efficacy and potential toxicity of VEGFR inhibitors, it is necessary to develop new strategies to improve the clinical efficacy of VEGFR inhibitors. The development of multitarget therapy, especially dual-target therapy, has become a hot research field of cancer therapy, which may provide an effective strategy with higher therapeutic efficacy, pharmacokinetic advantages and low toxicity. Many groups have reported that the therapeutic effects could be improved by simultaneously inhibiting VEGFR-2 and other targets, such as EGFR, c-Met, BRAF, HDAC, etc. Therefore, VEGFR-2 inhibitors with multi-targeting capabilities have been considered to be promising and effective anticancer agents for cancer therapy. In this work, we reviewed the structure and biological functions of VEGFR-2, and summarized the drug discovery strategies, and inhibitory activities of VEGFR-2 inhibitors with multi-targeting capabilities reported in recent years. This work might provide the reference for the development of VEGFR-2 inhibitors with multi-targeting capabilities as novel anticancer agents.


Assuntos
Antineoplásicos , Neoplasias , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Proliferação de Células , Descoberta de Drogas , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Bioorg Chem ; 131: 106328, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542986

RESUMO

Epigenetic regulation and Focal adhesion kinase (FAK) are considered to be two important targets for the development of antitumor drugs. Studies have shown that the combination of FAK and HDAC inhibitors could exhibit synergistic effects in a subset of cancer cells in vitro and in vivo. At present, there are few reports on dual target inhibitors of FAK and HDAC. Here, we first reported a new compound MY-1259 as a dual FAK and HDAC6 inhibitor, which exhibited efficient treatment effects on gastric cancers in vitro and in vivo. MY-1259 exhibited potent inhibitory activities against FAK (IC50 = 132 nM) and HDAC6 (IC50 = 16 nM). Notably, MY-1259 showed selective inhibitory potency on HDAC6 over HDAC1, HDAC2 and HDAC3. In addition, MY-1259 could potently inhibit the proliferative activities of MGC-803 and BGC-823 cells (IC50 = 3.91 and 15.46 nM, respectively, using flow cytometry counting), induce cell apoptosis, and cellular senescence. MY-1259 could effectively down-regulate the levels of Ac-Histone H3 and Ac-α-tubulin, and also inhibit the phosphorylation of FAK at three phosphorylation sites Y397, Y576/577 and Y925, thereby inhibiting the activation of ERK and AKT/mTOR. MY-1259 exhibited more effective antitumor effect in vivo than the HDAC inhibitor SAHA and FAK inhibitor TAE-226 alone or in combination, showing the advantages of FAK/HDAC dual inhibitors in the treatment of gastric cancers. Therefore, the results in this work suggested that inhibition of FAK and HDAC by MY-1259 might represent a promising strategy for the treatment of gastric cancers.


Assuntos
Antineoplásicos , Proteína-Tirosina Quinases de Adesão Focal , Inibidores de Histona Desacetilases , Neoplasias Gástricas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Epigênese Genética , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA