Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Neurodegener ; 12(1): 32, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337289

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of upper and lower motor neurons. The pathogenesis of ALS remains largely unknown; however, inflammation of the spinal cord is a focus of ALS research and an important pathogenic process in ALS. Prostaglandin E2 (PGE2) is a major lipid mediator generated by the arachidonic-acid cascade and is abundant at inflammatory sites. PGE2 levels are increased in the postmortem spinal cords of ALS patients and in ALS model mice. Beneficial therapeutic effects have been obtained in ALS model mice using cyclooxygenase-2 inhibitors to inhibit the biosynthesis of PGE2, but the usefulness of this inhibitor has not yet been proven in clinical trials. In this review, we present current evidence on the involvement of PGE2 in the progression of ALS and discuss the potential of microsomal prostaglandin E synthase (mPGES) and the prostaglandin receptor E-prostanoid (EP) 2 as therapeutic targets for ALS. Signaling pathways involving prostaglandin receptors mediate toxic effects in the central nervous system. In some situations, however, the receptors mediate neuroprotective effects. Our recent studies demonstrated that levels of mPGES-1, which catalyzes the final step of PGE2 biosynthesis, are increased at the early-symptomatic stage in the spinal cords of transgenic ALS model mice carrying the G93A variant of superoxide dismutase-1. In addition, in an experimental motor-neuron model used in studies of ALS, PGE2 induces the production of reactive oxygen species and subsequent caspase-3-dependent cytotoxicity through activation of the EP2 receptor. Moreover, this PGE2-induced EP2 up-regulation in motor neurons plays a role in the death of motor neurons in ALS model mice. Further understanding of the pathophysiological role of PGE2 in neurodegeneration may provide new insights to guide the development of novel therapies for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Camundongos , Animais , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios Motores/patologia , Camundongos Transgênicos , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Dinoprostona/uso terapêutico
2.
Synapse ; 77(3): e22262, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36637118

RESUMO

Nandrolone, an anabolic androgenic steroid, is included in the prohibited list of the World Anti-Doping Agency. Drugs of abuse activate brain dopamine neurons and nandrolone has been suspected of inducing dependence. Accordingly, possible critical periods for the effects of nandrolone on muscular strength and dopaminergic activity have been investigated, including the effects of chronically administered nandrolone alone and on morphine-induced increases in dopamine efflux in the nucleus accumbens. Six- or 10-week-old male Sprague-Dawley rats were used. Treatment with nandrolone was initiated in adolescent (6-week-old) and young adult (10-week-old) rats. Nandrolone (5.0 mg/kg s.c.) or sesame oil vehicle was given once daily, on six consecutive days per week, for 3 weeks and then once per day for 4 consecutive days. Nandrolone enhanced the developmental increase in grip strength of 6- but not 10-week-old rats, without altering the developmental increase in body weight of either age group. Using in vivo microdialysis in freely moving 6-week-old rats given nandrolone for 4 weeks, basal accumbal dopamine efflux was unaltered, while the increase in dopamine efflux induced by acute administration of morphine (1.0 mg/kg s.c.) was reduced. The present study provides in vivo evidence that adolescence constitutes a critical period during which repeated administration of nandrolone enhances increases in muscular strength without influencing increases in body weight. Though repeated administration of nandrolone during this period of adolescence did not stimulate in vivo mesolimbic dopaminergic activity, it disrupted stimulation by an opioid, the drug class that is most commonly coabused with nandrolone.


Assuntos
Dopamina , Nandrolona , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Nandrolona/farmacologia , Morfina/farmacologia , Núcleo Accumbens
3.
Oral Dis ; 29(4): 1770-1781, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35029007

RESUMO

OBJECTIVES: The detailed pathological mechanism of orofacial neuropathic pain remains unknown. We aimed to examine the pannexin 1 (Panx1) signaling in the trigeminal ganglion (TG) involvement in infraorbital nerve injury (IONI)-induced orofacial neuropathic pain. MATERIALS AND METHODS: Mechanical head-withdrawal threshold (MHWT) was measured in IONI-treated rats receiving intra-TG Panx1 inhibitor or metabotropic glutamate receptor 5 (mGluR5) antagonist administration and MHWTs in naive rats receiving intra-TG mGluR5 agonist administration post-IONI. Glutamate and Panx1 in the TG were measured post-IONI. Panx1, mGluR5, and glutamine synthetase expression in TG were immunohistochemically identified, and changes in the number of mGluR5-P2X3 -expressed TG neurons were examined. RESULTS: MHWT was significantly decreased post-IONI, and this decrease was reversed by Panx1 inhibition or mGluR5 antagonism. mGluR5 agonism induced a decrease in the MHWT. IONI increased extracellular glutamate in TG. Panx1 was expressed in satellite glial cells and TG neurons, and intra-TG mGluR5 antagonism decreased the number of mGluR5 and P2X3 positive TG neurons post-IONI. CONCLUSIONS: IONI facilitates glutamate release via Panx1 that activates mGluR5 which was expressed in the nociceptive TG neurons innervating the orofacial region. In turn, P2X3 receptor-expressed TG neurons are enhanced via mGluR5 signaling, resulting in orofacial neuropathic pain.


Assuntos
Hiperalgesia , Neuralgia , Ratos , Animais , Hiperalgesia/etiologia , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/patologia , Ratos Sprague-Dawley , Dor Facial , Glutamatos/metabolismo
4.
Eur J Neurosci ; 55(3): 733-745, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34989064

RESUMO

The nucleus accumbens contain orexinergic neural inputs and orexin OX1 - and OX2 -receptors. Behavioural studies suggest that accumbal orexin receptors modulate accumbal dopaminergic activity-dependent locomotion in rats. We studied the effects of intra-accumbal injection of orexin receptor ligands on accumbal extracellular dopamine levels in freely moving rats, using in vivo microdialysis and analysed the roles of OX1 - and OX2 -receptors in the regulation of basal accumbal dopamine efflux. The orexin receptor ligands were applied intra-accumbally though a microinjection needle attached with a dialysis probe. Neither the nonselective OX1 - and OX2 -receptor agonist orexin-A nor the preferential OX2 -receptor agonist orexin-B (500.0 pg and 5.0 ng) altered accumbal dopamine levels. The nonselective OX1 - and OX2 -receptor antagonist MK-4305 (suvorexant, 500.0 pg, 2.5 and 5.0 ng) enhanced dopamine efflux. A 2-h tetrodotoxin infusion into nucleus accumbens through the probe or co-administration of orexin-A (500.0 pg) strongly inhibited MK-4305 (5.0 ng)-induced accumbal dopamine efflux. The selective OX2 -receptor antagonist EMPA (90.0 and 900.0 pg, 9.0 ng) increased dopamine efflux. Intra-accumbal infusion of tetrodotoxin abolished EMPA (9.0 ng)-induced dopamine efflux. The selective OX1 -receptor antagonist SB-334867 (10.0 and 20.0 ng) failed to alter dopamine efflux. Co-administration of orexin-B (500.0 pg) inhibited both EMPA (9.0 ng)- and MK-4305 (5.0 ng)-induced dopamine efflux. Intraperitoneal injection of MK-4305 (10.0 mg/kg) did not affect accumbal dopamine efflux. The present study provides in vivo neuropharmacological evidence that accumbal OX2 - but not OX1 -receptors exert inhibitory regulation of basal accumbal dopamine efflux and that blockade of accumbal OX2 -receptors enhances dopamine efflux in nucleus accumbens of freely moving rats.


Assuntos
Dopamina , Núcleo Accumbens , Animais , Dopamina/farmacologia , Ligantes , Microdiálise , Receptores de Orexina , Orexinas/farmacologia , Ratos , Ratos Sprague-Dawley , Tetrodotoxina/farmacologia
5.
Pharmacol Rep ; 73(4): 971-983, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33743175

RESUMO

The nucleus accumbens (NAc) is a terminal region of mesocorticolimbic dopamine (DA) neuronal projections from the ventral tegmental area. Accumbal DA release is integrated by afferents from other brain regions and by interneurons, which involve a diversity of neurotransmitters and neuropeptides. These integrative processes, implicated in the pathobiology of neuropsychiatric disorders, are mediated via receptor subtypes whose relative roles in the regulation of accumbal DA release are poorly understood. Such complex interactions are exemplified by how selective activation of opioid receptor subtypes enhances accumbal DA efflux in a manner that is modulated by changes in neural activity through GABA receptor subtypes. This review delineates the roles of GABAA and GABAB receptors in GABAergic neural mechanisms in NAc that participate in delta- and mu-opioid receptor-mediated increases in accumbal DA efflux in freely moving rats, focusing on studies using in vivo brain microdialysis. First, we consider how endogenous GABA exerts inhibition of accumbal DA efflux through GABA receptor subtypes. We also consider possible intra-neuronal source of the endogenous GABA that inhibits accumbal DA efflux. As NAc contains GABAergic neurons that express delta- or mu-opioid receptors, inhibition of accumbal GABAergic neurons is a candidate for mediating delta- or mu-opioid receptor-mediated increases in accumbal DA efflux. Therefore, we provide a detailed analysis of the effects of GABA receptor subtype ligands on delta- and mu-opioid receptor-mediated accumbal DA efflux. Finally, we present an integrative model to explain the mechanisms of interaction among delta- and mu-opioid receptors, GABAergic neurons and DAergic neurons in NAc.


Assuntos
Dopamina/metabolismo , Neurônios GABAérgicos/metabolismo , Núcleo Accumbens/metabolismo , Animais , Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Receptores Opioides/metabolismo
6.
Cells ; 9(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708195

RESUMO

Motor neuron diseases are a group of progressive neurological disorders that degenerate motor neurons. The neuroblastoma × spinal cord hybrid cell line NSC-34 is widely used as an experimental model in studies of motor neuron diseases. However, the differentiation efficiency of NSC-34 cells to neurons is not always sufficient. We have found that prostaglandin E2 (PGE2) induces morphological differentiation in NSC-34 cells. The present study investigated the functional properties of PGE2-differentiated NSC-34 cells. Retinoic acid (RA), a widely-used agent inducing cell differentiation, facilitated neuritogenesis, which peaked on day 7, whereas PGE2-induced neuritogenesis took only 2 days to reach the same level. Whole-cell patch-clamp recordings showed that the current threshold of PGE2-treated cell action potentials was lower than that of RA-treated cells. PGE2 and RA increased the protein expression levels of neuronal differentiation markers, microtubule-associated protein 2c and synaptophysin, and to the same extent, motor neuron-specific markers HB9 and Islet-1. On the other hand, protein levels of choline acetyltransferase and basal release of acetylcholine in PGE2-treated cells were higher than in RA-treated cells. These results suggest that PGE2 is a rapid and efficient differentiation-inducing factor for the preparation of functionally mature motor neurons from NSC-34 cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Dinoprostona/farmacologia , Neurônios Motores/citologia , Acetilcolina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Neurônios Motores/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Tetrodotoxina/farmacologia , Tretinoína/farmacologia
7.
Neuropsychopharmacol Rep ; 40(1): 30-38, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31845549

RESUMO

AIMS: Orexin-A is known to induce anti-nociceptive effects in animal models of chronic pain. We have found that orexin-A inhibits KCl loading-induced increases in the intracellular calcium ion levels ([Ca2+ ]i ) in C-fiber-like neurons of rats showing inflammatory nociceptive behavior. Here, we examined the effects of orexin-A on the depolarization of C-fiber-like neurons derived from a rat model for another type of chronic pain, namely neuropathic pain. Thus, we analyzed the effects of orexin-A on KCl-induced increases in [Ca2+ ]i in C-fiber-like neurons of rats with sciatic nerve ligation. METHODS: Paw withdrawal and threshold force in response to tactile stimuli were evaluated using von Frey filaments. Sham-operated rats served as controls. [Ca2+ ]i in neurons were visualized by calcium fluorescent probe. Changes in [Ca2+ ]i were assessed using relative fluorescence intensity. RESULTS: Seven days after sciatic nerve ligation, paw withdrawal and threshold force for tactile stimuli were increased and reduced, respectively. KCl loading to neurons from either sciatic nerve-ligated or control rats increased relative fluorescence intensity. The KCl-induced increase in relative fluorescence intensity in sciatic nerve-ligated, but not that of control, rats was inhibited by orexin-A. The OX1 and OX2 receptor antagonist MK-4305 and OX2 receptor antagonist EMPA, but not the OX1 receptor antagonist SB 334867, each counteracted orexin-A-induced inhibition of KCl-provoked increases in relative fluorescence intensity. CONCLUSION: The present findings constitute neuropharmacological evidence that OX2 but not OX1 receptors mediate the inhibitory effects of orexin-A on KCl-induced increases in [Ca2+ ]i in C-fiber-like neurons of rats showing hyperalgesia provoked by sciatic nerve ligation.


Assuntos
Cálcio/metabolismo , Dor Crônica/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Proteínas Mitocondriais/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Neuralgia/metabolismo , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/metabolismo , Cloreto de Potássio/metabolismo , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Nervo Isquiático/lesões
8.
Synapse ; 73(4): e22081, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30450777

RESUMO

Cholinergic neurons in the nucleus accumbens contain GABAA and GABAB receptors that are thought to inhibit neural activity. We analyzed the roles of GABAA and GABAB receptors in regulating accumbal acetylcholine efflux of freely moving rats using in vivo microdialysis. The effects of GABA receptor ligands on the accumbal dopamine efflux were also analyzed because accumbal cholinergic and dopaminergic neurons could mutually interact. Drugs were applied intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 30-60 min infusions. To monitor basal acetylcholine, a low concentration of physostigmine (50 nM) was added to the perfusate. GABAA receptor agonist muscimol (3 and 30 pmol) induced a dose-related decrease in accumbal acetylcholine. GABAB receptor agonist baclofen (30 and 300 pmol) also produced a dose-related decrease in acetylcholine. GABAA receptor antagonist bicuculline (60 pmol) which failed to alter baseline acetylcholine counteracted the muscimol (30 pmol)-induced decrease in acetylcholine. GABAB receptor antagonist 2-hydroxysaclofen (12 nmol) which failed to change baseline acetylcholine, counteracted the baclofen (300 pmol)-induced decrease in acetylcholine. Neither muscimol (30 pmol) nor baclofen (300 pmol) which reduced accumbal acetylcholine altered baseline accumbal dopamine. Neither bicuculline (60 pmol) nor 2-hydroxysaclofen (12 nmol) also affected the baseline dopamine. These results show that GABAA and GABAB receptors each exert inhibitory roles in the regulation of accumbal cholinergic neural activity. The present results also provides in vivo neurochemical evidence that stimulation of GABAA and GABAB receptors each reduce acetylcholine efflux without affecting dopamine efflux in the nucleus accumbens of freely moving rats.


Assuntos
Acetilcolina/metabolismo , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Agonistas dos Receptores de GABA-B/farmacologia , Antagonistas de Receptores de GABA-B/farmacologia , Núcleo Accumbens/metabolismo , Animais , Baclofeno/análogos & derivados , Baclofeno/farmacologia , Bicuculina/farmacologia , Dopamina/metabolismo , Masculino , Movimento , Muscimol/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
9.
Eur J Pharmacol ; 837: 88-95, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30086266

RESUMO

The nucleus accumbens contains delta-opioid receptors that may decrease inhibitory neurotransmission. As GABAB receptors inhibit dopamine release, decrease in activation of GABAB receptors may be a mediator of delta-opioid receptor-induced accumbal dopamine efflux. If so, accumbal dopamine efflux induced by delta-opioid receptor activation should be suppressed by stimulating GABAB receptors. As delta-opioid receptors are further subdivided into delta1- and delta2-opioid receptors, we analysed the effects of the GABAB receptor agonist baclofen on delta1- and delta2-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were applied intracerebrally through the dialysis probe. Doses of compounds show total amount administered (mol) during 25-50 min infusions. Baclofen (2.5 and 5.0 nmol), which did not alter basal dopamine levels, inhibited the delta1-opioid receptor agonist DPDPE (5.0 nmol)-induced dopamine efflux. Baclofen (2.5 and 5.0 nmol) also inhibited the delta2-opioid receptor agonist deltorphin II (25.0 nmol)-induced dopamine efflux. A low dose of the GABAB receptor antagonist 2-hydroxysaclofen (100.0 pmol), which failed to alter basal accumbal dopamine levels, counteracted the inhibitory effects of baclofen (5.0 nmol) on DPDPE (5.0 nmol)- and deltorphin II (25.0 nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABAB receptor-mediated inhibition of accumbal dopaminergic activity facilitates activation of delta1- and delta2-opioid receptor-induced increases in accumbal dopamine efflux. This study suggests that activation of delta1- and delta2-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABAB receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux.


Assuntos
Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Receptores de GABA-B/fisiologia , Receptores Opioides delta/fisiologia , Animais , Baclofeno/farmacologia , D-Penicilina (2,5)-Encefalina/farmacologia , Masculino , Oligopeptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/fisiologia
10.
J Oral Sci ; 59(4): 557-564, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-28993579

RESUMO

We analysed the roles of orexin receptors in the effects of orexin-A on KCl-induced increases in intracellular calcium ion levels ([Ca2+]i) in C-fiber-like small neurons of rats with inflammation induced by intraplantar injection of carrageenan into the hind paw. Controls were treated with saline. Paw withdrawal and threshold forces in response to tactile stimuli were determined using von Frey filaments. [Ca2+]i in C-fiber-like neurons derived from dorsal root ganglia was visualised using a calcium fluorescence probe. Changes in neuronal [Ca2+]i were assessed as relative fluorescence intensity (F/F0). One day after carrageenan injection, the paw withdrawal response to tactile stimuli and the paw withdrawal threshold were increased and reduced, respectively. KCl loading of neurons from either carrageenan-treated or control rats increased F/F0 to about 2.0. KCl-induced increases in F/F0 of carrageenan-treated, but not control, rats were inhibited by orexin-A. The OX1 and OX2 receptor antagonist MK-4305, but not the OX1 receptor antagonist SB334867, counteracted the effects of orexin-A on the KCl-induced increase in F/F0. These results suggest that OX2, but not OX1 receptors mediate the inhibitory effect of orexin-A on KCl-induced increases in [Ca2+]i in C-fiber-like neurons of rats with inflammation.


Assuntos
Cálcio/metabolismo , Carragenina/administração & dosagem , Gânglios Espinais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de Orexina/fisiologia , Orexinas/farmacologia , Cloreto de Potássio/farmacologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Fluorescência , Corantes Fluorescentes/química , Gânglios Espinais/metabolismo , Ionomicina/administração & dosagem , Masculino , Neurônios/metabolismo , Receptores de Orexina/classificação , Orexinas/química , Ratos Wistar
11.
Eur J Pharmacol ; 815: 18-25, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28923348

RESUMO

The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABAA receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABAA receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABAA receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABAA receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABAA receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABAA receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux.


Assuntos
Dopamina/metabolismo , Movimento , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores de GABA-A/metabolismo , Receptores Opioides delta/antagonistas & inibidores , Animais , Bicuculina/farmacologia , Transporte Biológico/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Masculino , Muscimol/farmacologia , Oligopeptídeos/farmacologia , Ratos , Ratos Sprague-Dawley
12.
J Oral Sci ; 59(2): 195-200, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28637978

RESUMO

The nucleus accumbens is a terminal area of the mesolimbic dopaminergic system that arises in the ventral tegmental area. Opioids are thought to enhance dopaminergic activity in the nucleus accumbens by activating δ- and µ-opioid receptors in the ventral tegmental area. However, δ- and µ-opioid receptor agonists increase extracellular levels of accumbal dopamine when infused directly into the nucleus accumbens of rats. Therefore, the roles of δ- and µ-opioid receptors in regulation of accumbal dopaminergic neural activity have been analyzed by using δ- and µ-opioid receptor ligands. This review describes the mechanisms underlying the stimulatory effects on accumbal dopamine efflux, which are induced by local administration of δ- and µ-opioid receptor agonists into the nucleus accumbens of freely moving rats. The focus of this article is neurochemical studies that use in vivo microdialysis techniques. Taken together, the in vivo neurochemical evidence from these studies indicates that δ- and µ-opioid receptor agonists increase accumbal dopamine efflux by activating naloxone-sensitive opioid receptors, and by mechanisms independent of naloxone-sensitive opioid receptors, in the nucleus accumbens.


Assuntos
Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Animais , Espaço Extracelular/metabolismo , Ratos
13.
Eur J Pharmacol ; 789: 402-410, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27445235

RESUMO

Cholinergic neurons in the nucleus accumbens express delta- and mu-opioid receptors that are thought to inhibit neural activity. Delta- and mu-opioid receptors are divided into delta1- and delta2-opioid receptors and mu1- and mu2-opioid receptors, respectively. We analysed the roles of delta- and mu-opioid receptor subtypes in regulating accumbal acetylcholine efflux of freely moving rats using in vivo microdialysis. Other than naloxonazine, given intraperitoneally, delta- and mu-opioid receptor ligands were administered intracerebrally through the dialysis probe. Doses of these compounds indicate total amount (mol) over an infusion time of 30-60min. To monitor basal acetylcholine, a low concentration of physostigmine (50nM) was added to the perfusate. The delta1-opioid receptor agonist DPDPE (3 and 300pmol) and delta2-opioid receptor agonist deltorphin II (3 and 30pmol) decreased accumbal acetylcholine in a dose-related manner. DPDPE (300pmol)- and deltorphin II (3pmol)-induced reductions in acetylcholine were each inhibited by the delta1-opioid receptor antagonist BNTX (0.3pmol) and delta2-opioid receptor antagonist naltriben (15pmol), respectively. The mu-opioid receptor agonists endomorphin-1 and endomorphin-2 (6 and 30nmol) decreased acetylcholine in a dose-related manner. Endomorphin-1- and endomorphin-2 (30nmol)-induced reductions in acetylcholine were prevented by the mu-opioid receptor antagonist CTOP (3nmol). The mu1-opioid receptor antagonist naloxonazine (15mg/kg ip), which inhibits endomorphin-1 (15nmol)-induced accumbal dopamine efflux, did not alter endomorphin-1- or endomorphin-2 (30nmol)-induced reductions in acetylcholine efflux. This study provides in vivo evidence for delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, that inhibit accumbal cholinergic neural activity.


Assuntos
Acetilcolina/metabolismo , Analgésicos Opioides/farmacologia , Movimento , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores Opioides/metabolismo , Animais , Dopamina/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Masculino , Núcleo Accumbens/citologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides delta/agonistas , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inibidores
14.
Int J Oral Sci ; 7(3): 155-60, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26047579

RESUMO

This study used in vivo microdialysis to examine the effects of intragingival application of lipopolysaccharide (LPS) derived from Porphyromonas gingivalis (Pg-LPS) on gingival tumour necrosis factor (TNF)-α and interleukin (IL)-6 levels in rats. A microdialysis probe with an injection needle attached to the surface of the dialysis membrane was implanted into the gingiva of the upper incisor. For comparison, the effects of LPS derived from Escherichia coli (Ec-LPS) on IL-6 and TNF-α levels were also analysed. Pg-LPS (1 µg/1 µL) or Ec-LPS (1 or 6 µg/1 µL) was applied by microsyringe, with gingival dialysates collected every hour. Enzyme-linked immunosorbent assay (ELISA) revealed that gingival dialysates contained approximately 389 pg·mL⁻¹ of IL-6 basally; basal TNF-α levels were lower than the detection limit of the ELISA. Pg-LPS failed to alter IL-6 levels but markedly increased TNF-α levels, which remained elevated for 2 h after treatment. Neither IL-6 nor TNF-α were affected by Ec-LPS. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that the gingiva expresses Toll-like receptor (TLR) 2 and TLR4 mRNA. Immunohistochemical examination showed that TLR2 and TLR4 are expressed by gingival epithelial cells. The present study provides in vivo evidence that locally applied Pg-LPS, but not Ec-LPS, into the gingiva transiently increases gingival TNF-α without affecting IL-6. The present results suggest that TLR2 but not TLR4 expressed on gingival epithelial cells may mediate the Pg-LPS-induced increase in gingival TNF-α in rats.


Assuntos
Gengiva/efeitos dos fármacos , Interleucina-6/metabolismo , Lipopolissacarídeos/administração & dosagem , Porphyromonas gingivalis/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Gengiva/metabolismo , Masculino , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
15.
Behav Pharmacol ; 26(1-2): 73-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25438092

RESUMO

Intra-accumbal infusion of the α1-adrenergic agonist methoxamine, which has comparable affinity for α1A-, α1B- and α1D-adrenoceptor subtypes, fails to alter noradrenaline efflux but reduces dopamine efflux in the nucleus accumbens of rats. In-vivo microdialysis experiments were carried out to analyse the putative contribution of α1A-, α1B- and α1D-adrenoceptor subtypes to the methoxamine-induced decrease in accumbal dopamine efflux in freely moving rats. The drugs used were dissolved in the infusion medium and administered locally through a dialysis membrane. Intra-accumbal infusions of the α1A-adrenoceptor antagonist 5-methylurapidil (6 pmol), the α1B-adrenoceptor antagonist cyclazosin (0.6 and 6 pmol) and the α1D-adrenoceptor antagonist BMY 7378 (0.6 pmol) did not alter accumbal efflux of noradrenaline or dopamine: pretreatment with each of these α1-adrenoceptor subtype-selective antagonists counteracted the methoxamine (24 pmol)-induced decrease in accumbal dopamine efflux. Doses indicated are the total amount of drug administered over a 60-min infusion period. These results clearly suggest that the α1A-, α1B- and α1D-adrenoceptor subtypes in the nucleus accumbens mediate the α1-adrenergic agonist methoxamine-induced decrease in accumbal dopamine efflux. The present study also provides in-vivo neurochemical evidence indicating that concomitant, but not separate, activation of the α1A-, α1B- and α1D-adrenoceptors in the nucleus accumbens is required for α1-adrenergic inhibition of accumbal dopaminergic activity.


Assuntos
Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Metoxamina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Antagonistas Adrenérgicos alfa/administração & dosagem , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Masculino , Microdiálise , Núcleo Accumbens/metabolismo , Piperazinas/farmacologia , Quinazolinas/administração & dosagem , Quinazolinas/farmacologia , Quinoxalinas/administração & dosagem , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/metabolismo
16.
Behav Pharmacol ; 26(1-2): 18-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25485640

RESUMO

Current concepts of basal ganglia function have evolved from the essentially motoric, to include a range of extramotoric functions that involve not only dopaminergic but also cholinergic, γ-aminobutyric acid (GABA)ergic and glutamatergic mechanisms. We consider these mechanisms and their efferent systems, including spiralling, feed-forward striato-nigro-striatal circuitry, involving the dorsal and ventral striatum and the nucleus accumbens (NAc) core and shell. These processes are illustrated using three behavioural models: turning-pivoting, orofacial movements in rats and orofacial movements in genetically modified mice. Turning-pivoting indicates that dopamine-dependent behaviour elicited from the NAc shell is funnelled through the NAc-nigro-striato-nigro-pedunculopontine pathway, whereas acetylcholine-dependent behaviour elicited from the NAc shell is funnelled through the NAc-ventral pallidum-mediodorsal thalamus pathway. Cooperative/synergistic interactions between striatal D1-like and D2-like dopamine receptors regulate individual topographies of orofacial movements that are funnelled through striatal projection pathways and involve interactions with GABAergic and glutamatergic receptor subtypes. This application of concerted behavioural, neurochemical and neurophysiological techniques implicates a network that is yet broader and interacts with other neurotransmitters and neuropeptides within subcortical, cortical and brainstem regions to 'sculpt' aspects of behaviour into its topographical collective.


Assuntos
Gânglios da Base/fisiologia , Atividade Motora/fisiologia , Núcleo Accumbens/fisiologia , Acetilcolina/metabolismo , Animais , Comportamento Animal/fisiologia , Corpo Estriado/fisiologia , Dopamina/metabolismo , Face/fisiologia , Camundongos , Camundongos Transgênicos , Movimento/fisiologia , Ratos , Receptores Dopaminérgicos/metabolismo , Estriado Ventral/fisiologia
17.
Behav Pharmacol ; 26(1-2): 81-90, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25325287

RESUMO

It has previously been demonstrated that mesolimbic α-adrenoceptors, but not ß-adrenoceptors, control the release of dopamine that is derived from reserpine-sensitive storage vesicles. The aim of the present study was to investigate whether these storage vesicles also regulate α-adrenoceptor-mediated or ß-adrenoceptor-mediated changes in behaviour. Accordingly, rats were pretreated with reserpine before the α-adrenoceptor antagonist phentolamine or the ß-adrenoceptor agonist isoproterenol was locally applied to the nucleus accumbens. Both phentolamine and isoproterenol increased the duration of walking, rearing and grooming and decreased the duration of sitting. Reserpine counteracted the behavioural response elicited by phentolamine but not by isoproterenol. The results of the present study demonstrate that mesolimbic α-adrenoceptors, but not ß-adrenoceptors, regulate behaviour that is mediated by reserpine-sensitive storage pools. It is hypothesized that the observed α-adrenoceptor-mediated increase in locomotor activity is due to the α-adrenoceptor-mediated increase in the release of accumbal intravesicular dopamine. Our finding that α-adrenoceptors inhibit, whereas ß-adrenoceptors stimulate, locomotor activity may help explain why noradrenaline or environmental stressors have previously been found to have opposing effects on the regulation of behaviour.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Receptores Adrenérgicos alfa/metabolismo , Reserpina/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Isoproterenol/farmacologia , Atividade Motora/efeitos dos fármacos , Norepinefrina/metabolismo , Núcleo Accumbens/metabolismo , Fentolamina/farmacologia , Ratos , Receptores Adrenérgicos alfa/efeitos dos fármacos , Receptores Adrenérgicos beta/efeitos dos fármacos , Receptores Adrenérgicos beta/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo
18.
Eur J Pharmacol ; 715(1-3): 363-9, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23665498

RESUMO

The effects of intra-accumbal infusion of selective agonists for the ß-adrenoceptor subtypes on the noradrenaline and dopamine efflux in the nucleus accumbens of freely moving rats were investigated, using in vivo microdialysis. Neither ß1-(dobutamine: 0.06 and 0.12 pmol) nor ß2-adrenoceptor agonist (salbutamol: 0.36 and 3.6 pmol) altered the basal noradrenaline and dopamine efflux in the nucleus accumbens. Co-administration of 0.06 pmol of dobutamine with salbutamol (3.6 pmol) did not affect the noradrenaline levels, but it increased the dopamine efflux to approximately 120%. Co-administration of 0.12 pmol of dobutamine with salbutamol (0.36 or 3.6pmol) also increased DA efflux to approximately 120% without affecting noradrenaline levels. The non-selective ß-adrenoceptor antagonist l-propranolol (1200 pmol) that did not alter the basal noradrenaline and dopamine levels, suppressed the dopamine efflux, induced by co-administration of dobutamine (0.12 pmol) and salbutamol (3.6 pmol). The doses mentioned are the total amount of drug over the 60-min infusion period. The present results support our previously reported conclusion that stimulation of accumbal ß-adrenoceptors which are suggested to be postsynaptically located on accumbal dopaminergic terminals, can enhance the dopamine efflux in the nucleus accumbens. The present study also provides in vivo neurochemical evidence that concomitant, but not separate, activation of accumbal ß1- and ß2-adrenoceptors synergistically increases the accumbal dopamine efflux.


Assuntos
Albuterol/farmacologia , Dobutamina/farmacologia , Dopamina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Masculino , Movimento , Norepinefrina/metabolismo , Núcleo Accumbens/citologia , Ratos , Ratos Sprague-Dawley
20.
Eur J Pharmacol ; 688(1-3): 35-41, 2012 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-22617026

RESUMO

In vivo microdialysis was used to analyse the role of the α(1)- and α(2)-adrenoceptor subtypes in the regulation of noradrenaline and dopamine efflux in the nucleus accumbens of freely moving rats. Intra-accumbal infusion of α(1)-adrenoceptor agonist methoxamine (24pmol) failed to alter the noradrenaline efflux, but decreased the dopamine efflux. The intra-accumbal infusion of α(1)-adrenoceptor antagonist prazosin (6, 600 and 6000pmol) produced a dose-related increase and decrease of the noradrenaline and dopamine efflux, respectively. An ineffective dose of prazosin (6pmol) counteracted the methoxamine (24pmol)-induced decrease of dopamine efflux. The prazosin (6000pmol)-induced increase of noradrenaline efflux, but not the decrease of dopamine efflux, was suppressed by the co-administration of an ineffective dose of methoxamine (0.024pmol). Neither the α(2)-adrenoceptor agonist clonidine (300pmol) and UK 14,304 (300pmol) nor the α(2)-adrenoceptor antagonist RX 821002 (0.6, 3, 600 and 6000pmol) significantly affected the accumbal noradrenaline and dopamine efflux. The doses mentioned are the total amount of drug over the 60-min infusion period. The present results show that (1) accumbal α(1)-adrenoceptors which are presynaptically located on noradrenergic nerve terminals inhibit the accumbal noradrenaline efflux, increasing thereby the accumbal dopamine efflux, (2) accumbal α(1)-adrenoceptors which are postsynaptically located on dopaminergic nerve terminals inhibit the accumbal dopamine efflux, and (3) accumbal α(2)-adrenoceptors play no major role in the regulation of accumbal efflux of noradrenaline and dopamine.


Assuntos
Dopamina/metabolismo , Movimento , Norepinefrina/metabolismo , Núcleo Accumbens/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Tartarato de Brimonidina , Clonidina/farmacologia , Relação Dose-Resposta a Droga , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Idazoxano/análogos & derivados , Idazoxano/farmacologia , Masculino , Metoxamina/antagonistas & inibidores , Metoxamina/farmacologia , Movimento/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Prazosina/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA