Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 154: 113554, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35987163

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is a serious microvascular complication of diabetes mellitus. Mesenchymal stem cells are currently studied as therapeutic strategy for management of DR. Exosomes, considered as a promising cell-free therapy option, display biological functions similar to those of their parent cells. In retinal development, Wnt/b-catenin signaling provides key cues for functional progression. The present study aimed to evaluate the potential efficacy of bone marrow-derived mesenchymal stem cell-derived exosomes (BM-MSCs-Ex) in diabetes-induced retinal injury via modulation of the Wnt/ b-catenin signaling pathway. METHODS: Eighty-one rats were allocated into 6 groups (control, DR, DR + DKK1, DR + exosomes, DR + Wnt3a and DR + exosomes+Wnt3a). Evaluation of each group was via histopathological examination, assessment of gene and/or protein expression concerned with oxidative stress (SOD1, SOD2, Nox2, Nox4, iNOS), inflammation (TNF-α, ICAM-1, NF-κB) and angiogenesis (VEGF, VE-cadherin). RESULTS: Results demonstrated that exosomes blocked the wnt/b-catenin pathway in diabetic retina concomitant with significant reduction of features of DR as shown by downregulation of retinal oxidants, upregulation of antioxidant enzymes, suppression of retinal inflammatory and angiogenic markers. These results were further confirmed by histopathological results, fundus examination and optical coherence tomography. Additionally, exosomes ameliorative effects abrogated wnt3a-triggered retinal injury in DR. CONCLUSION: Collectively, these data demonstrated that exosomes ameliorated diabetes-induced retinal injury via suppressing Wnt/ b-catenin signaling with subsequent reduction of oxidative stress, inflammation and angiogenesis.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Exossomos , Células-Tronco Mesenquimais , Animais , Cateninas/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Exossomos/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Ratos , Via de Sinalização Wnt , beta Catenina/metabolismo
2.
Cells ; 10(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831042

RESUMO

BACKGROUND: Liver transplantation remains the only viable therapy for liver failure but has a severely restricted utility. Here, we aimed to decellularize rat livers to form acellular 3D bio-scaffolds suitable for seeding with induced pluripotent cells (iPSCs) as a tool to investigate the role of Wnt/ß-catenin signaling in liver development and generation. METHODS: Dissected rat livers were randomly divided into three groups: I (control); II (decellularized scaffolds) and III (recellularized scaffolds). Liver decellularization was established via an adapted perfusion procedure and assessed through the measurement of extracellular matrix (ECM) proteins and DNA content. Liver recellularization was assessed through histological examination and measurement of transcript levels of Wnt/ß-catenin pathway, hepatogenesis, liver-specific microRNAs and growth factors essential for liver development. Adult rat liver decellularization was confirmed by the maintenance of ECM proteins and persistence of growth factors essential for liver regeneration. RESULTS: iPSCs seeded rat decellularized livers displayed upregulated transcript expression of Wnt/ß-catenin pathway-related, growth factors, and liver specification genes. Further, recellularized livers displayed restored liver-specific functions including albumin secretion and urea synthesis. CONCLUSION: This establishes proof-of-principle for the generation of three-dimensional liver organ scaffolds as grafts and functional re-establishment.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Alicerces Teciduais/química , Regulação para Cima , Via de Sinalização Wnt , Albuminas/metabolismo , Animais , Diferenciação Celular , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Masculino , Ratos , Ureia/metabolismo , alfa-Fetoproteínas/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA