Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513239

RESUMO

Transient abnormal myelopoiesis (TAM) is a common complication in newborns with Down syndrome (DS). It commonly progresses to myeloid leukemia (ML-DS) after spontaneous regression. In contrast to the favorable prognosis of primary ML-DS, patients with refractory/relapsed ML-DS have poor outcomes. However, the molecular basis for refractoriness and relapse, and the full spectrum of driver mutations in ML-DS remain largely unknown. We conducted a genomic profiling study of 143 TAM, 204 ML-DS, and 34 non-DS acute megakaryoblastic leukemia cases, including 39 ML-DS cases analyzed by exome sequencing. Sixteen novel mutational targets were identified in ML-DS samples. Of these, inactivations of IRX1 (16.2%) and ZBTB7A (13.2%) were commonly implicated in the upregulation of the MYC pathway and were potential targets for ML-DS treatment with bromodomain-containing protein 4 inhibitors. Partial tandem duplications of RUNX1 on chromosome 21 were also found, specifically in ML-DS samples (13.7%), presenting its essential role in DS leukemia progression. Finally, in 177 patients with ML-DS treated following the same ML-DS protocol (the Japanese Pediatric Leukemia and Lymphoma Study Group AML-D05/D11), CDKN2A, TP53, ZBTB7A, and JAK2 alterations were associated with a poor prognosis. Patients with CDKN2A deletions (n = 7) or TP53 mutations (n = 4) had substantially lower 3-year event-free survival [28.6% vs. 90.5%, P < 0.001; 25.0% vs. 89.5%, P < 0.001] than those without these mutations. These findings considerably change the mutational landscape of ML-DS, provide new insights into the mechanisms of progression from TAM to ML-DS, and help identify new therapeutic targets and strategies for ML-DS.

2.
Nature ; 620(7974): 607-614, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495687

RESUMO

Recent studies have documented frequent evolution of clones carrying common cancer mutations in apparently normal tissues, which are implicated in cancer development1-3. However, our knowledge is still missing with regard to what additional driver events take place in what order, before one or more of these clones in normal tissues ultimately evolve to cancer. Here, using phylogenetic analyses of multiple microdissected samples from both cancer and non-cancer lesions, we show unique evolutionary histories of breast cancers harbouring der(1;16), a common driver alteration found in roughly 20% of breast cancers. The approximate timing of early evolutionary events was estimated from the mutation rate measured in normal epithelial cells. In der(1;16)(+) cancers, the derivative chromosome was acquired from early puberty to late adolescence, followed by the emergence of a common ancestor by the patient's early 30s, from which both cancer and non-cancer clones evolved. Replacing the pre-existing mammary epithelium in the following years, these clones occupied a large area within the premenopausal breast tissues by the time of cancer diagnosis. Evolution of multiple independent cancer founders from the non-cancer ancestors was common, contributing to intratumour heterogeneity. The number of driver events did not correlate with histology, suggesting the role of local microenvironments and/or epigenetic driver events. A similar evolutionary pattern was also observed in another case evolving from an AKT1-mutated founder. Taken together, our findings provide new insight into how breast cancer evolves.


Assuntos
Neoplasias da Mama , Linhagem da Célula , Células Clonais , Evolução Molecular , Mutagênese , Mutação , Adolescente , Adulto , Feminino , Humanos , Adulto Jovem , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem da Célula/genética , Células Clonais/metabolismo , Células Clonais/patologia , Epigênese Genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/patologia , Microdissecção , Taxa de Mutação , Pré-Menopausa , Microambiente Tumoral
3.
Blood Cancer Discov ; 4(2): 102-105, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779909

RESUMO

SUMMARY: Low-hypodiploid acute lymphoblastic leukemia (LH-ALL) in both children and adults is characterized by biallelic TP53 alterations in virtually all cases. However, in contrast to a common germline origin of the TP53 mutations in pediatric cases, those in adult cases are mostly somatic and are derived from age-related clonal hematopoiesis (ARCH), highlighting the role of TP53-mutant ARCH in the development not only of myeloid leukemogenesis but also of LH-ALL in aged populations. See related article by Kim et al., p. 134 (4).


Assuntos
Hematopoiese Clonal , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Criança , Idoso , Hematopoiese Clonal/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Mutação , Aneuploidia , Doença Aguda , Proteína Supressora de Tumor p53/genética
4.
Blood ; 141(5): 534-549, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322930

RESUMO

Germ line DDX41 variants have been implicated in late-onset myeloid neoplasms (MNs). Despite an increasing number of publications, many important features of DDX41-mutated MNs remain to be elucidated. Here we performed a comprehensive characterization of DDX41-mutated MNs, enrolling a total of 346 patients with DDX41 pathogenic/likely-pathogenic (P/LP) germ line variants and/or somatic mutations from 9082 MN patients, together with 525 first-degree relatives of DDX41-mutated and wild-type (WT) patients. P/LP DDX41 germ line variants explained ∼80% of known germ line predisposition to MNs in adults. These risk variants were 10-fold more enriched in Japanese MN cases (n = 4461) compared with the general population of Japan (n = 20 238). This enrichment of DDX41 risk alleles was much more prominent in male than female (20.7 vs 5.0). P/LP DDX41 variants conferred a large risk of developing MNs, which was negligible until 40 years of age but rapidly increased to 49% by 90 years of age. Patients with myelodysplastic syndromes (MDS) along with a DDX41-mutation rapidly progressed to acute myeloid leukemia (AML), which was however, confined to those having truncating variants. Comutation patterns at diagnosis and at progression to AML were substantially different between DDX41-mutated and WT cases, in which none of the comutations affected clinical outcomes. Even TP53 mutations made no exceptions and their dismal effect, including multihit allelic status, on survival was almost completely mitigated by the presence of DDX41 mutations. Finally, outcomes were not affected by the conventional risk stratifications including the revised/molecular International Prognostic Scoring System. Our findings establish that MDS with DDX41-mutation defines a unique subtype of MNs that is distinct from other MNs.


Assuntos
RNA Helicases DEAD-box , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , RNA Helicases DEAD-box/genética , Células Germinativas , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Transtornos Mieloproliferativos/genética
5.
Nature ; 609(7928): 754-760, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940203

RESUMO

Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1-5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.


Assuntos
COVID-19 , Proteínas Ativadoras de GTPase , Estudo de Associação Genômica Ampla , Fatores de Troca do Nucleotídeo Guanina , Interações entre Hospedeiro e Microrganismos , SARS-CoV-2 , Alelos , Animais , COVID-19/complicações , COVID-19/genética , COVID-19/imunologia , COVID-19/fisiopatologia , Modelos Animais de Doenças , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Predisposição Genética para Doença , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Japão , Pulmão/patologia , Macrófagos , Mesocricetus , Pessoa de Meia-Idade , Pneumonia/complicações , Pirazóis/farmacologia , RNA-Seq , SARS-CoV-2/patogenicidade , Carga Viral , Redução de Peso
6.
Nat Commun ; 13(1): 4830, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995775

RESUMO

Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , COVID-19/epidemiologia , COVID-19/genética , Humanos , Japão/epidemiologia , Lectinas Tipo C/genética , Glicoproteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Receptores Imunológicos/genética
7.
Blood Cancer Discov ; 3(5): 410-427, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35839275

RESUMO

Acute erythroid leukemia (AEL) is a unique subtype of acute myeloid leukemia characterized by prominent erythroid proliferation whose molecular basis is poorly understood. To elucidate the underlying mechanism of erythroid proliferation, we analyzed 121 AEL using whole-genome, whole-exome, and/or targeted-capture sequencing, together with transcriptome analysis of 21 AEL samples. Combining publicly available sequencing data, we found a high frequency of gains and amplifications involving EPOR/JAK2 in TP53-mutated cases, particularly those having >80% erythroblasts designated as pure erythroid leukemia (10/13). These cases were frequently accompanied by gains and amplifications of ERG/ETS2 and associated with a very poor prognosis, even compared with other TP53-mutated AEL. In addition to activation of the STAT5 pathway, a common feature across all AEL cases, these AEL cases exhibited enhanced cell proliferation and heme metabolism and often showed high sensitivity to ruxolitinib in vitro and in xenograft models, highlighting a potential role of JAK2 inhibition in therapeutics of AEL. SIGNIFICANCE: This study reveals the major role of gains, amplifications, and mutations of EPOR and JAK2 in the pathogenesis of pure erythroleukemia. Their frequent response to ruxolitinib in patient-derived xenograft and cell culture models highlights a possible therapeutic role of JAK2 inhibition for erythroleukemia with EPOR/JAK2-involving lesions. This article is highlighted in the In This Issue feature, p. 369.


Assuntos
Janus Quinase 2 , Leucemia Eritroblástica Aguda , Leucemia Mieloide Aguda , Receptores da Eritropoetina , Exoma , Humanos , Janus Quinase 2/genética , Leucemia Eritroblástica Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Prognóstico , Receptores da Eritropoetina/genética
9.
Nat Med ; 27(7): 1239-1249, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239136

RESUMO

Clonal hematopoiesis (CH) in apparently healthy individuals is implicated in the development of hematological malignancies (HM) and cardiovascular diseases. Previous studies of CH analyzed either single-nucleotide variants and indels (SNVs/indels) or copy number alterations (CNAs), but not both. Here, using a combination of targeted sequencing of 23 CH-related genes and array-based CNA detection of blood-derived DNA, we have delineated the landscape of CH-related SNVs/indels and CNAs in 11,234 individuals without HM from the BioBank Japan cohort, including 672 individuals with subsequent HM development, and studied the effects of these somatic alterations on mortality from HM and cardiovascular disease, as well as on hematological and cardiovascular phenotypes. The total number of both types of CH-related lesions and their clone size positively correlated with blood count abnormalities and mortality from HM. CH-related SNVs/indels and CNAs exhibited statistically significant co-occurrence in the same individuals. In particular, co-occurrence of SNVs/indels and CNAs affecting DNMT3A, TET2, JAK2 and TP53 resulted in biallelic alterations of these genes and was associated with higher HM mortality. Co-occurrence of SNVs/indels and CNAs also modulated risks for cardiovascular mortality. These findings highlight the importance of detecting both SNVs/indels and CNAs in the evaluation of CH.


Assuntos
Doenças Cardiovasculares/genética , Hematopoiese Clonal/genética , Variações do Número de Cópias de DNA/genética , Neoplasias Hematológicas/genética , Polimorfismo de Nucleotídeo Único/genética , Idoso , Biomarcadores Tumorais/genética , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/patologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Marcadores Genéticos/genética , Neoplasias Hematológicas/mortalidade , Neoplasias Hematológicas/patologia , Células-Tronco Hematopoéticas/citologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL/genética , Janus Quinase 2/genética , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética
10.
Cancer Sci ; 112(7): 2921-2927, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33934450

RESUMO

Mature teratomas are usually benign tumors that rarely undergo malignant transformation. We report an advanced neuroblastoma arising in a mature teratoma of the ovary. Whole-exome sequencing identified extensive copy-neutral loss of heterozygosity (LOH) in both neuroblastoma and teratoma elements, suggesting that the neuroblastoma evolved from the teratoma. In addition, several truncating germline heterozygous variants in tumor suppressor genes, including RBL2 and FBXW12, became homozygous as a result of LOH. Collectively, we speculate that extensive LOH in teratoma cells may force heterozygous germline variants to become homozygous, which, in turn, may contribute to the development of neuroblastoma with the acquisition of additional chromosomal changes.


Assuntos
Mutação em Linhagem Germinativa , Perda de Heterozigosidade , Neoplasias Primárias Múltiplas/genética , Neuroblastoma/genética , Neoplasias Ovarianas/genética , Teratoma/genética , Adolescente , Proteínas F-Box/genética , Feminino , Homozigoto , Humanos , Neoplasias Primárias Múltiplas/tratamento farmacológico , Neoplasias Primárias Múltiplas/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Proteína p130 Retinoblastoma-Like/genética , Teratoma/tratamento farmacológico , Teratoma/patologia , Sequenciamento do Exoma
13.
Clin Cancer Res ; 27(6): 1756-1765, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323405

RESUMO

PURPOSE: Extramammary Paget disease (EMPD) is an uncommon skin malignancy whose genetic alterations are poorly characterized. Previous reports identified mutations in chromatin remodeling genes and PIK3CA. In order to unambiguously determine driver mutations in EMPD, we analyzed 87 EMPD samples using exome sequencing in combination with targeted sequencing. EXPERIMENTAL DESIGN: First, we analyzed 37 EMPD samples that were surgically resected using whole-exome sequencing. Based on several in silico analysis, we built a custom capture panel of putative driver genes and analyzed 50 additional formalin-fixed, paraffin-embedded samples using target sequencing. ERBB2 expression was evaluated by HER2 immunohisotochemistry. Select samples were further analyzed by fluorescence in situ hybridization. RESULTS: A median of 92 mutations/sample was identified in exome analysis. A union of driver detection algorithms identified ERBB2, ERBB3, KMT2C, TP53, PIK3CA, NUP93, AFDN, and CUX1 as likely driver mutations. Copy-number alteration analysis showed regions spanning CDKN2A as recurrently deleted, and ERBB2 as recurrently amplified. ERBB2, ERBB3, and FGFR1 amplification/mutation showed tendency toward mutual exclusivity. Copy-number alteration load was associated with likelihood to recur. Mutational signatures were dominated by aging and APOBEC activation and lacked evidence of ultraviolet radiation. HER2 IHC/fluorescence in situ analysis validated ERBB2 amplification but was underpowered to detect mutations. Tumor heterogeneity in terms of ERBB2 amplification status was observed in some cases. CONCLUSIONS: Our comprehensive, unbiased analysis shows EMPD is characterized by alterations involving the PI3K-AKT pathway. EMPD is distinct from other skin cancers in both molecular pathways altered and etiology behind mutagenesis.


Assuntos
Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA , Mutação , Recidiva Local de Neoplasia/genética , Doença de Paget Extramamária/genética , Receptor ErbB-2/metabolismo , Amplificação de Genes , Humanos , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Doença de Paget Extramamária/metabolismo , Doença de Paget Extramamária/patologia , Prognóstico , Receptor ErbB-2/genética , Taxa de Sobrevida , Sequenciamento do Exoma
14.
Nat Med ; 26(10): 1549-1556, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747829

RESUMO

Tumor protein p53 (TP53) is the most frequently mutated gene in cancer1,2. In patients with myelodysplastic syndromes (MDS), TP53 mutations are associated with high-risk disease3,4, rapid transformation to acute myeloid leukemia (AML)5, resistance to conventional therapies6-8 and dismal outcomes9. Consistent with the tumor-suppressive role of TP53, patients harbor both mono- and biallelic mutations10. However, the biological and clinical implications of TP53 allelic state have not been fully investigated in MDS or any other cancer type. We analyzed 3,324 patients with MDS for TP53 mutations and allelic imbalances and delineated two subsets of patients with distinct phenotypes and outcomes. One-third of TP53-mutated patients had monoallelic mutations whereas two-thirds had multiple hits (multi-hit) consistent with biallelic targeting. Established associations with complex karyotype, few co-occurring mutations, high-risk presentation and poor outcomes were specific to multi-hit patients only. TP53 multi-hit state predicted risk of death and leukemic transformation independently of the Revised International Prognostic Scoring System (IPSS-R)11. Surprisingly, monoallelic patients did not differ from TP53 wild-type patients in outcomes and response to therapy. This study shows that consideration of TP53 allelic state is critical for diagnostic and prognostic precision in MDS as well as in future correlative studies of treatment response.


Assuntos
Instabilidade Genômica/genética , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Proteína Supressora de Tumor p53/genética , Alelos , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA , Feminino , Frequência do Gene , Humanos , Perda de Heterozigosidade/genética , Masculino , Mutação , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/terapia , Fenótipo , Prognóstico , Análise de Sobrevida , Resultado do Tratamento
15.
Cancer Discov ; 10(6): 836-853, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249213

RESUMO

STAG2 encodes a cohesin component and is frequently mutated in myeloid neoplasms, showing highly significant comutation patterns with other drivers, including RUNX1. However, the molecular basis of cohesin-mutated leukemogenesis remains poorly understood. Here we show a critical role of an interplay between STAG2 and RUNX1 in the regulation of enhancer-promoter looping and transcription in hematopoiesis. Combined loss of STAG2 and RUNX1, which colocalize at enhancer-rich, CTCF-deficient sites, synergistically attenuates enhancer-promoter loops, particularly at sites enriched for RNA polymerase II and Mediator, and deregulates gene expression, leading to myeloid-skewed expansion of hematopoietic stem/progenitor cells (HSPC) and myelodysplastic syndromes (MDS) in mice. Attenuated enhancer-promoter loops in STAG2/RUNX1-deficient cells are associated with downregulation of genes with high basal transcriptional pausing, which are important for regulation of HSPCs. Downregulation of high-pausing genes is also confirmed in STAG2-cohesin-mutated primary leukemia samples. Our results highlight a unique STAG2-RUNX1 interplay in gene regulation and provide insights into cohesin-mutated leukemogenesis. SIGNIFICANCE: We demonstrate a critical role of an interplay between STAG2 and a master transcription factor of hematopoiesis, RUNX1, in MDS development, and further reveal their contribution to regulation of high-order chromatin structures, particularly enhancer-promoter looping, and the link between transcriptional pausing and selective gene dysregulation caused by cohesin deficiency.This article is highlighted in the In This Issue feature, p. 747.


Assuntos
Proteínas de Ciclo Celular/deficiência , Cromatina/genética , Proteínas Cromossômicas não Histona/deficiência , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Síndromes Mielodisplásicas/etiologia , Animais , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Coesinas
16.
Blood Adv ; 4(5): 845-854, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32126143

RESUMO

Loss-of-function mutations in ten-eleven translocation-2 (TET2) are recurrent events in acute myeloid leukemia (AML) as well as in preleukemic hematopoietic stem cells (HSCs) of age-related clonal hematopoiesis. TET3 mutations are infrequent in AML, but the level of TET3 expression in HSCs has been found to decline with age. We examined the impact of gradual decrease of TET function in AML development by generating mice with Tet deficiency at various degrees. Tet2f/f and Tet3f/f mice were crossed with mice expressing Mx1-Cre to generate Tet2f/wtTet3f/fMx-Cre+ (T2ΔT3), Tet2f/fTet3f/wtMx-Cre+ (ΔT2T3), and Tet2f/fTet3f/fMx-Cre+ (ΔT2ΔT3) mice. All ΔT2ΔT3 mice died of aggressive AML at a median survival of 10.7 weeks. By comparison, T2ΔT3 and ΔT2T3 mice developed AML at longer latencies, with a median survival of ∼27 weeks. Remarkably, all 9 T2ΔT3 and 8 ΔT2T3 mice with AML showed inactivation of the remaining nontargeted Tet2 or Tet3 allele, respectively, owing to exonic loss in either gene or stop-gain mutations in Tet3. Recurrent mutations other than Tet3 were not noted in any mice by whole-exome sequencing. Spontaneous inactivation of residual Tet2 or Tet3 alleles is a recurrent genetic event during the development of AML with Tet insufficiency.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas , Animais , Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/genética , Camundongos , Mutação , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA