RESUMO
The iron-based KxFe2-ySe2 superconductor displays phase separation, leading to the coexisting metallic phase embedded in an antiferromagnetic matrix. The metallic character of the system is believed to arise from a percolative granular network affecting normal as well as superconducting state properties. This network can be manipulated and controlled through thermal treatments. In this study, we have used scanning X-ray micro-fluorescence to visualize morphology of the phase separation and the percolation in KxFe2-ySe2, manipulated by distinct thermal treatments, i.e., fast quenching and slow cooling. We find a differing spatial correlation between Fe and K in differently treated samples, ascribed to different Fe vacancy ordering. We have identified an intermediate phase that acts as an interface between the two phases. The high temperature quenching produces oriented clustered microstructure in which the percolation threshold is lower and hence a more effective network for the transport pathways. Instead, the slow cooling results in larger interfaces around the percolation threshold affecting the superconducting properties of the system. The results provide a quantitative characterization of microstructural morphology of differently grown KxFe2-ySe2 showing potential for the design of electronic devices based on sub-micron scale chemical phase separation, thus opening avenues for further studies of complex heterogeneous structures.
RESUMO
Many technological applications demand large amount of nanoparticles with well-defined properties, which is feasible only by using large-scale production methods. In this framework, we have performed structural and local geometric investigations of cobalt oxide nanoparticles synthesized by high temperature arc plasma route in helium and in air atmosphere with different arc currents, a competitive and low cost technological approach to synthesize large quantity of different types of nanoparticles. The complex scenario of phase fraction, shape, size distribution and hysteresis loop features of high temperature arc plasma synthesis of nanoparticles can be determined by the arc current and the selected gas. X-ray diffraction patterns reveal a multicomponent phase formation containing cubic cobaltous oxide (CoO), cobaltic oxide (Co3O4) and metallic cobalt phases. The synthesis of different phases is confirmed by x-ray absorption spectroscopy measurements at the CoK-edge. Both extended x-ray absorption fine structure and x-ray absorption near edge structure analyses show the presence of metallic nanoparticles in He ambient at high arc current. Moreover, high-resolution transmission electron microscopy images and magnetic hysteresis loop measurements show that the mean particle size increases and the coercivity decreases with increasing arc current in air ambient due to the intense particle-particle interaction. At variance, in He ambient synthesized samples due to the high quenching rate and the high thermal conductivity, a multi-domain formation in which the nanoparticles' crystalline fraction decreases and a fluctuating coercivity due to core-shell structure is observed.
RESUMO
Tardigrades can cope with adverse environmental conditions by turning into anhydrobiotes with a characteristic tun shape. Tun formation is an essential morphological adaptation for tardigrade entry into the anhydrobiotic state. The tun cell structure and ultrastructure have rarely been explored in tardigrades in general and never in Hypsibius exemplaris. We used transmission electron microscopy to compare cellular organization and ultrastructures between hydrated and anhydrobiotic H. exemplaris. Despite a globally similar cell organelle structure and a number of cells not significantly different between hydrated and desiccated tardigrades, reductions in the sizes of both cells and mitochondria were detected in dehydrated animals. Moreover, in anhydrobiotes, secretory active cells with a dense endoplasmic reticulum network were observed. Interestingly, these anhydrobiote-specific cells are in a close relationship with a specific extracellular structure surrounding each cell. It is possible that this rampart-like extracellular structure resulted from the accumulation of anhydrobiotic-specific material to protect the cells. Interestingly, after five hours of rehydration, the number of secretory cells decreased, and the specific extracellular structure began to disappear. Twenty-four hours after the beginning of rehydration, the cellular structure and ultrastructure were comparable to those observed in hydrated tardigrades.
Assuntos
Adaptação Fisiológica , Núcleo Celular/fisiologia , Dessecação/métodos , Microscopia Eletrônica de Transmissão/métodos , Mitocôndrias/fisiologia , Tardígrados/fisiologia , Animais , Núcleo Celular/ultraestrutura , Mitocôndrias/ultraestrutura , Tardígrados/ultraestruturaRESUMO
We have studied the valence electronic structure of Ag1-xSn1+xSe2 (x = 0.0, 0.1, 0.2, 0.25) and SnSe (x = 1.0) by a combined analysis of X-ray absorption spectroscopy (XAS) and X-ray photoemission spectroscopy (XPS) measurements. Both XAS and XPS reveal an increase in electron carriers in the system with x (i.e. excess Sn concentration) for 0 ≤ x ≤ 0.25. The core-level spectra (Sn 3d, Ag 3d and Se 3d) show that the charge state of Ag is almost 1+, while that of of Sn splits into Sn2+ and Sn4+ (providing clear evidence of valence skipping for the first time) with a concomitant splitting of Se into Se2- and Se2-δ states. The x dependence of the split components in Sn and Se together with the Se-K edge XAS reveals that the Se valence state may have an essential role in the transport properties of this system.
RESUMO
We have studied the local structure and valence electronic unoccupied states of thermoelectric CsBi4Te6 and superconducting CsBi3.5Pb0.5Te6 (Tc â¼ 3 K) by extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) measurements. The Bi-L3 edge EXAFS reveals wide Bi-Te distance distribution for both compounds indicating complex atomic arrangements in the studied system. The mean square relative displacements (MSRDs) of the Bi-Te bond distances appear largely increased in Pb substituted system due to larger overall local disorder, however, one of the Bi-Te bonds shows a reduced disorder. On the other hand, the Bi-L3 edge XANES is hardly affected by Pb substitution while the Te-L1 edge XANES reveals increased density of unoccupied Te 5p states. This suggests that the carriers introduced by the Pb substitution in CsBi4-xPbxTe6 preferentially goes on Te sites. Similarly, the Cs-L3 edge XANES also shows small changes due to Pb-substitution and reduced local disorder indicated by the reduced width of the Cs-L3 edge white line. We have also shown that the X-ray photoemission spectroscopy (XPS) measurements on various electronic core levels are in a qualitative agreement with the XANES results. These findings are consistent with carrier doping and a reduced disorder in one direction to be likely factors to drive the thermoelectric CsBi4Te6 into a bulk superconductor by Pb-substitution in CsBi4-xPbxTe6.