Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167295

RESUMO

Despite the constant advances in fluorescence imaging techniques, monitoring endogenous proteins still constitutes a major challenge in particular when considering dynamics studies or super-resolution imaging. We have recently evolved specific protein-based binders for PSD-95, the main postsynaptic scaffold proteins at excitatory synapses. Since the synthetic recombinant binders recognize epitopes not directly involved in the target protein activity, we consider them here as tools to develop endogenous PSD-95 imaging probes. After confirming their lack of impact on PSD-95 function, we validated their use as intrabody fluorescent probes. We further engineered the probes and demonstrated their usefulness in different super-resolution imaging modalities (STED, PALM, and DNA-PAINT) in both live and fixed neurons. Finally, we exploited the binders to enrich at the synapse genetically encoded calcium reporters. Overall, we demonstrate that these evolved binders constitute a robust and efficient platform to selectively target and monitor endogenous PSD-95 using various fluorescence imaging techniques.


Assuntos
Corantes Fluorescentes , Neurônios , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Neurônios/metabolismo , Corantes Fluorescentes/metabolismo , Sinapses/metabolismo
2.
Sci Adv ; 8(30): eabm5298, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35895810

RESUMO

Regulation of synaptic neurotransmitter receptor content is a fundamental mechanism for tuning synaptic efficacy during experience-dependent plasticity and behavioral adaptation. However, experimental approaches to track and modify receptor movements in integrated experimental systems are limited. Exploiting AMPA-type glutamate receptors (AMPARs) as a model, we generated a knock-in mouse expressing the biotin acceptor peptide (AP) tag on the GluA2 extracellular N-terminal. Cell-specific introduction of biotin ligase allows the use of monovalent or tetravalent avidin variants to respectively monitor or manipulate the surface mobility of endogenous AMPAR containing biotinylated AP-GluA2 in neuronal subsets. AMPAR immobilization precluded the expression of long-term potentiation and formation of contextual fear memory, allowing target-specific control of the expression of synaptic plasticity and animal behavior. The AP tag knock-in model offers unprecedented access to resolve and control the spatiotemporal dynamics of endogenous receptors, and opens new avenues to study the molecular mechanisms of synaptic plasticity and learning.

3.
Front Synaptic Neurosci ; 14: 835427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546899

RESUMO

Neuroligins (NLGNs) form a family of cell adhesion molecules implicated in synapse development, but the mechanisms that retain these proteins at synapses are still incompletely understood. Recent studies indicate that surface-associated NLGN1 is diffusionally trapped at synapses, where it interacts with quasi-static scaffolding elements of the post-synaptic density. Whereas single molecule tracking reveals rapid diffusion and transient immobilization of NLGN1 at synapses within seconds, fluorescence recovery after photobleaching experiments indicate instead a long-term turnover of NLGN1 at synapse, in the hour time range. To gain insight into the mechanisms supporting NLGN1 anchorage at post-synapses and try to reconcile those experimental paradigms, we quantitatively analyzed here live-cell and super-resolution imaging experiments performed on NLGN1 using a newly released simulator of membrane protein dynamics for fluorescence microscopy, FluoSim. Based on a small set of parameters including diffusion coefficients, binding constants, and photophysical rates, the framework describes fairly well the dynamic behavior of extra-synaptic and synaptic NLGN1 over both short and long time ranges, and provides an estimate of NLGN1 copy numbers in post-synaptic densities at steady-state (around 50 dimers). One striking result is that the residence time of NLGN1 at synapses is much longer than what can be expected from extracellular interactions with pre-synaptic neurexins only, suggesting that NLGN1 is stabilized at synapses through multivalent interactions with intracellular post-synaptic scaffolding proteins.

4.
Elife ; 112022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35532105

RESUMO

MDGA molecules can bind neuroligins and interfere with trans-synaptic interactions to neurexins, thereby impairing synapse development. However, the subcellular localization and dynamics of MDGAs, or their specific action mode in neurons remain unclear. Here, surface immunostaining of endogenous MDGAs and single molecule tracking of recombinant MDGAs in dissociated hippocampal neurons reveal that MDGAs are homogeneously distributed and exhibit fast membrane diffusion, with a small reduction in mobility across neuronal maturation. Knocking-down/out MDGAs using shRNAs and CRISPR/Cas9 strategies increases the density of excitatory synapses, the membrane confinement of neuroligin-1, and the phosphotyrosine level of neuroligins associated with excitatory post-synaptic differentiation. Finally, MDGA silencing reduces the mobility of AMPA receptors, increases the frequency of miniature EPSCs (but not IPSCs), and selectively enhances evoked AMPA-receptor-mediated EPSCs in CA1 pyramidal neurons. Overall, our results support a mechanism by which interactions between MDGAs and neuroligin-1 delays the assembly of functional excitatory synapses containing AMPA receptors.


Assuntos
Proteínas do Tecido Nervoso , Receptores de AMPA , Moléculas de Adesão Celular Neuronais/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/fisiologia
5.
Nat Cell Biol ; 23(11): 1148-1162, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34737443

RESUMO

Actin filaments generate mechanical forces that drive membrane movements during trafficking, endocytosis and cell migration. Reciprocally, adaptations of actin networks to forces regulate their assembly and architecture. Yet, a demonstration of forces acting on actin regulators at actin assembly sites in cells is missing. Here we show that local forces arising from actin filament elongation mechanically control WAVE regulatory complex (WRC) dynamics and function, that is, Arp2/3 complex activation in the lamellipodium. Single-protein tracking revealed WRC lateral movements along the lamellipodium tip, driven by elongation of actin filaments and correlating with WRC turnover. The use of optical tweezers to mechanically manipulate functional WRC showed that piconewton forces, as generated by single-filament elongation, dissociated WRC from the lamellipodium tip. WRC activation correlated with its trapping, dwell time and the binding strength at the lamellipodium tip. WRC crosslinking, hindering its mechanical dissociation, increased WRC dwell time and Arp2/3-dependent membrane protrusion. Thus, forces generated by individual actin filaments on their regulators can mechanically tune their turnover and hence activity during cell migration.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Movimento Celular , Fibroblastos/metabolismo , Mecanotransdução Celular , Pseudópodes/metabolismo , Citoesqueleto de Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Animais , Linhagem Celular Transformada , Camundongos , Microscopia de Fluorescência , Pinças Ópticas , Imagem Individual de Molécula , Estresse Mecânico , Fatores de Tempo
6.
Biol Cell ; 113(12): 492-506, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34498765

RESUMO

Leucine Rich Repeat Transmembrane proteins (LRRTMs) are neuronal cell adhesion molecules involved in synapse development and plasticity. LRRTM2 is the most synaptogenic isoform of the family, and its expression is strongly restricted to excitatory synapses in mature neurons. However, the mechanisms by which LRRTM2 is trafficked and stabilized at synapses remain unknown. Here, we examine the role of LRRTM2 intracellular domain on its membrane expression and stabilization at excitatory synapses, using a knock-down strategy combined to single molecule tracking and super-resolution dSTORM microscopy. We show that LRRTM2 operates an important shift in mobility after synaptogenesis in hippocampal neurons. Knock-down of LRRTM2 during synapse formation reduced excitatory synapse density in mature neurons. Deletion of LRRTM2 C-terminal domain abolished the compartmentalization of LRRTM2 in dendrites and disrupted its synaptic enrichment. Furtheremore, we show that LRRTM2 diffusion is increased in the absence of its intracellular domain, and that the protein is more dispersed at synapses. Surprisingly, LRRTM2 confinement at synapses was strongly dependent on a YxxC motif in the C-terminal domain, but was independent of the PDZ-like binding motif ECEV. Finally, the nanoscale organization of LRRTM2 at excitatory synapses depended on its C-terminal domain, with involvement of both the PDZ-binding and YxxC motifs. Altogether, these results demonstrate that LRRTM2 trafficking and enrichment at excitatory synapses are dependent on its intracellular domain.


Assuntos
Proteínas do Tecido Nervoso , Moléculas de Adesão de Célula Nervosa , Moléculas de Adesão Celular Neuronais/metabolismo , Células Cultivadas , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Sinapses
7.
Nat Rev Neurosci ; 22(4): 237-255, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33712727

RESUMO

The brain is arguably the most complex organ. The branched and extended morphology of nerve cells, their subcellular complexity, the multiplicity of brain cell types as well as their intricate connectivity and the scattering properties of brain tissue present formidable challenges to the understanding of brain function. Neuroscientists have often been at the forefront of technological and methodological developments to overcome these hurdles to visualize, quantify and modify cell and network properties. Over the last few decades, the development of advanced imaging methods has revolutionized our approach to explore the brain. Super-resolution microscopy and tissue imaging approaches have recently exploded. These instrumentation-based innovations have occurred in parallel with the development of new molecular approaches to label protein targets, to evolve new biosensors and to target them to appropriate cell types or subcellular compartments. We review the latest developments for labelling and functionalizing proteins with small localization and functionalized reporters. We present how these molecular tools are combined with the development of a wide variety of imaging methods that break either the diffraction barrier or the tissue penetration depth limits. We put these developments in perspective to emphasize how they will enable step changes in our understanding of the brain.


Assuntos
Encéfalo/citologia , Microscopia/métodos , Neuroglia/citologia , Neurônios/citologia , Coloração e Rotulagem/métodos , Animais , Humanos
9.
Neuropharmacology ; 169: 107555, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30831159

RESUMO

Adhesion proteins play crucial roles at synapses, not only by providing a physical trans-synaptic linkage between axonal and dendritic membranes, but also by connecting to functional elements including the pre-synaptic neurotransmitter release machinery and post-synaptic receptors. To mediate these functions, adhesion proteins must be organized on the neuronal surface in a precise and controlled manner. Recent studies have started to describe the mobility, nanoscale organization, and turnover rate of key synaptic adhesion molecules including cadherins, neurexins, neuroligins, SynCAMs, and LRRTMs, and show that some of these proteins are highly mobile in the plasma membrane while others are confined at sub-synaptic compartments, providing evidence for different regulatory pathways. In this review article, we provide a biophysical view of the diffusional trapping of adhesion molecules at synapses, involving both extracellular and intracellular protein interactions. We review the methodology underlying these measurements, including biomimetic systems with purified adhesion proteins, means to perturb protein expression or function, single molecule imaging in cultured neurons, and analytical models to interpret the data. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.


Assuntos
Fenômenos Biofísicos/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/análise , Moléculas de Adesão Celular Neuronais/genética , Humanos , Neurônios/química , Neurônios/metabolismo , Transporte Proteico/fisiologia , Sinapses/química , Sinapses/genética
10.
Cell Rep ; 29(5): 1130-1146.e8, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665629

RESUMO

Tetraspanins are a class of evolutionarily conserved transmembrane proteins with 33 members identified in mammals that have the ability to organize specific membrane domains, named tetraspanin-enriched microdomains (TEMs). Despite the relative abundance of different tetraspanins in the CNS, few studies have explored their role at synapses. Here, we investigate the function of TSPAN5, a member of the tetraspanin superfamily for which mRNA transcripts are found at high levels in the mouse brain. We demonstrate that TSPAN5 is localized in dendritic spines of pyramidal excitatory neurons and that TSPAN5 knockdown induces a dramatic decrease in spine number because of defects in the spine maturation process. Moreover, we show that TSPAN5 interacts with the postsynaptic adhesion molecule neuroligin-1, promoting its correct surface clustering. We propose that membrane compartmentalization by tetraspanins represents an additional mechanism for regulating excitatory synapses.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Espinhas Dendríticas/metabolismo , Microdomínios da Membrana/metabolismo , Tetraspaninas/química , Tetraspaninas/metabolismo , Animais , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Hipocampo/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Ligação Proteica , Células Piramidais/metabolismo , Ratos Wistar , Sinapses/metabolismo
11.
Nat Commun ; 10(1): 4462, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575863

RESUMO

During clathrin mediated endocytosis (CME), the concerted action of dynamin and its interacting partners drives membrane scission. Essential interactions occur between the proline/arginine-rich domain of dynamin (dynPRD) and the Src-homology domain 3 (SH3) of various proteins including amphiphysins. Here we show that multiple SH3 domains must bind simultaneously to dynPRD through three adjacent motifs for dynamin's efficient recruitment and function. First, we show that mutant dynamins modified in a single motif, including the central amphiphysin SH3 (amphSH3) binding motif, partially rescue CME in dynamin triple knock-out cells. However, mutating two motifs largely prevents that ability. Furthermore, we designed divalent dynPRD-derived peptides. These ligands bind multimers of amphSH3 with >100-fold higher affinity than monovalent ones in vitro. Accordingly, dialyzing living cells with these divalent peptides through a patch-clamp pipette blocks CME much more effectively than with monovalent ones. We conclude that dynamin drives vesicle scission via multivalent interactions in cells.


Assuntos
Dinaminas/química , Dinaminas/metabolismo , Endocitose/fisiologia , Domínios e Motivos de Interação entre Proteínas , Animais , Sítios de Ligação , Clatrina/farmacologia , Dinaminas/genética , Endocitose/efeitos dos fármacos , Técnicas de Inativação de Genes , Cinética , Ligantes , Camundongos , Células NIH 3T3 , Ligação Proteica , Domínios Proteicos , Proteômica , Domínios de Homologia de src
12.
Nat Commun ; 10(1): 4521, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586061

RESUMO

Designing highly specific modulators of protein-protein interactions (PPIs) is especially challenging in the context of multiple paralogs and conserved interaction surfaces. In this case, direct generation of selective and competitive inhibitors is hindered by high similarity within the evolutionary-related protein interfaces. We report here a strategy that uses a semi-rational approach to separate the modulator design into two functional parts. We first achieve specificity toward a region outside of the interface by using phage display selection coupled with molecular and cellular validation. Highly selective competition is then generated by appending the more degenerate interaction peptide to contact the target interface. We apply this approach to specifically bind a single PDZ domain within the postsynaptic protein PSD-95 over highly similar PDZ domains in PSD-93, SAP-97 and SAP-102. Our work provides a paralog-selective and domain specific inhibitor of PSD-95, and describes a method to efficiently target other conserved PPI modules.


Assuntos
Anticorpos/química , Domínios PDZ , Peptídeos/química , Engenharia de Proteínas , Mapas de Interação de Proteínas/efeitos dos fármacos , Animais , Anticorpos/farmacologia , Células COS , Chlorocebus aethiops , Proteína 4 Homóloga a Disks-Large/antagonistas & inibidores , Proteína 4 Homóloga a Disks-Large/metabolismo , Desenho de Fármacos , Mapeamento de Epitopos , Modelos Moleculares , Biblioteca de Peptídeos , Peptídeos/farmacologia , Ligação Proteica , Proteínas Recombinantes/metabolismo
13.
Nat Commun ; 9(1): 4272, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323233

RESUMO

Impaired hippocampal synaptic plasticity contributes to cognitive impairment in Huntington's disease (HD). However, the molecular basis of such synaptic plasticity defects is not fully understood. Combining live-cell nanoparticle tracking and super-resolution imaging, we show that AMPAR surface diffusion, a key player in synaptic plasticity, is disturbed in various rodent models of HD. We demonstrate that defects in the brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling pathway contribute to the deregulated AMPAR trafficking by reducing the interaction between transmembrane AMPA receptor regulatory proteins (TARPs) and the PDZ-domain scaffold protein PSD95. The disturbed AMPAR surface diffusion is rescued by the antidepressant drug tianeptine via the BDNF signaling pathway. Tianeptine also restores the impaired LTP and hippocampus-dependent memory in different HD mouse models. These findings unravel a mechanism underlying hippocampal synaptic and memory dysfunction in HD, and highlight AMPAR surface diffusion as a promising therapeutic target.


Assuntos
Hipocampo/fisiopatologia , Doença de Huntington/fisiopatologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Difusão , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Potenciação de Longa Duração/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Tiazepinas/farmacologia
14.
Neuron ; 100(1): 106-119.e7, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30269991

RESUMO

NMDA receptors (NMDARs) play key roles in the use-dependent adaptation of glutamatergic synapses underpinning memory formation. In the forebrain, these plastic processes involve the varied contributions of GluN2A- and GluN2B-containing NMDARs that have different signaling properties. Although the molecular machinery of synaptic NMDAR trafficking has been under scrutiny, the postsynaptic spatial organization of these two receptor subtypes has remained elusive. Here, we used super-resolution imaging of NMDARs in rat hippocampal synapses to unveil the nanoscale topography of native GluN2A- and GluN2B-NMDARs. Both subtypes were found to be organized in separate nanodomains that vary over the course of development. Furthermore, GluN2A- and GluN2B-NMDAR nanoscale organizations relied on distinct regulatory mechanisms. Strikingly, the selective rearrangement of GluN2A- and GluN2B-NMDARs, with no overall change in NMDAR current amplitude, allowed bi-directional tuning of synaptic LTP. Thus, GluN2A- and GluN2B-NMDAR nanoscale organizations are differentially regulated and seem to involve distinct signaling complexes during synaptic adaptation.


Assuntos
Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Hipocampo/metabolismo , Camundongos , Nanotecnologia/métodos , Ratos , Ratos Sprague-Dawley
15.
Nat Commun ; 9(1): 3979, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266896

RESUMO

To better understand the molecular mechanisms by which early neuronal connections mature into synapses, we examined the impact of neuroligin-1 (Nlg1) phosphorylation on synapse differentiation, focusing on a unique intracellular tyrosine (Y782), which differentially regulates Nlg1 binding to PSD-95 and gephyrin. By expressing Nlg1 point mutants (Y782A/F) in hippocampal neurons, we show using imaging and electrophysiology that Y782 modulates the recruitment of functional AMPA receptors (AMPARs). Nlg1-Y782F impaired both dendritic spine formation and AMPAR diffusional trapping, but not NMDA receptor recruitment, revealing the assembly of silent synapses. Furthermore, replacing endogenous Nlg1 with either Nlg1-Y782A or -Y782F in CA1 hippocampal neurons impaired long-term potentiation (LTP), demonstrating a critical role of AMPAR synaptic retention. Screening of tyrosine kinases combined with pharmacological inhibitors point to Trk family members as major regulators of endogenous Nlg1 phosphorylation and synaptogenic function. Thus, Nlg1 tyrosine phosphorylation signaling is a critical event in excitatory synapse differentiation and LTP.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Potenciação de Longa Duração/fisiologia , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Tirosina/metabolismo , Animais , Células COS , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Chlorocebus aethiops , Hipocampo/citologia , Potenciação de Longa Duração/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Neurônios/metabolismo , Neurônios/fisiologia , Ratos Sprague-Dawley , Sinapses/metabolismo , Tirosina/genética
16.
Elife ; 72018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044218

RESUMO

The nanoscale organization of neurotransmitter receptors regarding pre-synaptic release sites is a fundamental determinant of the synaptic transmission amplitude and reliability. How modifications in the pre- and post-synaptic machinery alignments affects synaptic currents, has only been addressed with computer modelling. Using single molecule super-resolution microscopy, we found a strong spatial correlation between AMPA receptor (AMPAR) nanodomains and the post-synaptic adhesion protein neuroligin-1 (NLG1). Expression of a truncated form of NLG1 disrupted this correlation without affecting the intrinsic AMPAR organization, shifting the pre-synaptic release machinery away from AMPAR nanodomains. Electrophysiology in dissociated and organotypic hippocampal rodent cultures shows these treatments significantly decrease AMPAR-mediated miniature and EPSC amplitudes. Computer modelling predicts that ~100 nm lateral shift between AMPAR nanoclusters and glutamate release sites induces a significant reduction in AMPAR-mediated currents. Thus, our results suggest the synapses necessity to release glutamate precisely in front of AMPAR nanodomains, to maintain a high synaptic responses efficiency.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neurônios/citologia , Ratos , Transmissão Sináptica
17.
Cell Rep ; 23(11): 3137-3145, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898386

RESUMO

Alzheimer's disease (AD) is emerging as a synaptopathology driven by metaplasticity. Indeed, reminiscent of metaplasticity, oligomeric forms of the amyloid-ß peptide (oAß) prevent induction of long-term potentiation (LTP) via the prior activation of GluN2B-containing NMDA receptors (NMDARs). However, the downstream Ca2+-dependent signaling molecules that mediate aberrant metaplasticity are unknown. In this study, we show that oAß promotes the activation of Ca2+/calmodulin-dependent kinase II (CaMKII) via GluN2B-containing NMDARs. Importantly, we find that CaMKII inhibition rescues both the LTP impairment and the dendritic spine loss mediated by oAß. Mechanistically resembling metaplasticity, oAß prevents subsequent rounds of plasticity from inducing CaMKII T286 autophosphorylation, as well as the associated anchoring and accumulation of synaptic AMPA receptors (AMPARs). Finally, prolonged oAß treatment-induced CaMKII misactivation leads to dendritic spine loss via the destabilization of surface AMPARs. Thus, our study demonstrates that oAß engages synaptic metaplasticity via aberrant CaMKII activation.


Assuntos
Peptídeos beta-Amiloides/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fragmentos de Peptídeos/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , Espinhas Dendríticas/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Fragmentos de Peptídeos/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Nat Protoc ; 12(4): 748-763, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28277548

RESUMO

Recent progress in super-resolution imaging (SRI) has created a strong need to improve protein labeling with probes of small size that minimize the target-to-label distance, increase labeling density, and efficiently penetrate thick biological tissues. This protocol describes a method for labeling genetically modified proteins incorporating a small biotin acceptor peptide with a 3-nm fluorescent probe, monomeric streptavidin. We show how to express, purify, and conjugate the probe to organic dyes with different fluorescent properties, and how to label selectively biotinylated membrane proteins for SRI techniques (point accumulation in nanoscale topography (PAINT), stimulated emission depletion (STED), stochastic optical reconstruction microscopy (STORM)). This method is complementary to the previously described anti-GFP-nanobody/SNAP-tag strategies, with the main advantage being that it requires only a short 15-amino-acid tag, and can thus be used with proteins resistant to fusion with large tags and for multicolor imaging. The protocol requires standard molecular biology/biochemistry equipment, making it easily accessible for laboratories with only basic skills in cell biology and biochemistry. The production/purification/conjugation steps take ∼5 d, and labeling takes a few minutes to an hour.


Assuntos
Corantes Fluorescentes/química , Coloração e Rotulagem/métodos , Estreptavidina/química , Sequência de Aminoácidos , Animais , Células COS , Membrana Celular/metabolismo , Cricetinae , Camundongos , Modelos Moleculares , Conformação Proteica
19.
Neurophotonics ; 3(4): 041810, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27872870

RESUMO

The advent of superresolution imaging has created a strong need for both optimized labeling strategies and analysis methods to probe the nanoscale organization of complex biological structures. We present a thorough description of the distribution of synaptic adhesion proteins at the nanoscopic scale, namely presynaptic neurexin-[Formula: see text] ([Formula: see text]), and its two postsynaptic binding partners neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2). We monitored these proteins in the membrane of neurons by direct stochastic optical reconstruction microscopy, after live surface labeling with Alexa647-conjugated monomeric streptavidin. The small probe ([Formula: see text]) efficiently penetrates into crowded synaptic junctions and reduces the distance to target. We quantified the organization of the single-molecule localization data using a tesselation-based analysis technique. We show that Nlg1 exhibits a fairly disperse organization within dendritic spines, while LRRTM2 is organized in compact domains, and [Formula: see text] in presynaptic terminals displays a dual-organization pattern intermediate between that of Nlg1 and LRRTM2. These results suggest that part of [Formula: see text] interacts transsynaptically with Nlg1 and the other part with LRRTM2.

20.
Nat Commun ; 7: 10773, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26979420

RESUMO

The advent of super-resolution imaging (SRI) has created a need for optimized labelling strategies. We present a new method relying on fluorophore-conjugated monomeric streptavidin (mSA) to label membrane proteins carrying a short, enzymatically biotinylated tag, compatible with SRI techniques including uPAINT, STED and dSTORM. We demonstrate efficient and specific labelling of target proteins in confined intercellular and organotypic tissues, with reduced steric hindrance and no crosslinking compared with multivalent probes. We use mSA to decipher the dynamics and nanoscale organization of the synaptic adhesion molecules neurexin-1ß, neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2) in a dual-colour configuration with GFP nanobody, and show that these proteins are diffusionally trapped at synapses where they form apposed trans-synaptic adhesive structures. Furthermore, Nlg1 is dynamic, disperse and sensitive to synaptic stimulation, whereas LRRTM2 is organized in compact and stable nanodomains. Thus, mSA is a versatile tool to image membrane proteins at high resolution in complex live environments, providing novel information about the nano-organization of biological structures.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Membrana/metabolismo , Nanotecnologia/métodos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Coloração e Rotulagem/métodos , Sinapses/metabolismo , Animais , Biotinilação , Proteínas de Fluorescência Verde , Células HEK293 , Hipocampo/citologia , Humanos , Indicadores e Reagentes , Camundongos , Camundongos Knockout , Simulação de Dinâmica Molecular , Moléculas de Adesão de Célula Nervosa/metabolismo , Ratos , Estreptavidina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA