Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 30(2): 025709, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30398164

RESUMO

Few-layer graphene (FLG) platelets exfoliated directly from graphite are finding a wide range of potential applications, including composites and printed electronics. However, characterisation of the FLG material following incorporation into polymers, including the quality of the dispersion, remains a challenge. Here, we present the use of terahertz time-domain spectroscopy as a potential solution to this challenge which could form the basis of a rapid characterisation tool. The THz refractive index was found to be highly sensitive to the loading of FLG, opening the route to mapping local FLG concentration within a polymer composite sample. By fitting the measured permittivity of the flakes to the Drude-Smith model of conductivity, we also show that the carrier concentrations of these materials are comparable to un-doped chemical vapour deposition produced materials. The ability to measure electronic properties of FLG following processing is important to ensure that defects have not been introduced or chemical functionalisation removed during processing.

2.
J Acoust Soc Am ; 144(2): 584, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30180662

RESUMO

The characterization of ultrasound fields generated by diagnostic and therapeutic equipment is an essential requirement for performance validation and to demonstrate compliance against established safety limits. This requires hydrophones calibrated to a traceable standard. Currently, the upper calibration frequency range available to the user community is limited to 60 MHz. However, high frequencies are increasingly being used for both imaging and therapy necessitating calibration frequencies up to 100 MHz. The precise calibration of hydrophones requires a source of high amplitude, broadband, quasi-planar, and stable ultrasound fields. There are challenges to using conventional piezoelectric sources, and laser generated ultrasound sources offer a promising solution. In this study, various nanocomposites consisting of a bulk polymer matrix and multi-walled carbon nanotubes were fabricated and tested using pulsed laser of a few nanoseconds for their suitability as a source for high frequency calibration of hydrophones. The pressure amplitude and bandwidths were measured using a broadband hydrophone from 27 different nanocomposite sources. The effect of nonlinear propagation of high amplitude laser generated ultrasound on bandwidth and the effect of bandlimited sensitivity response on the deconvolved pressure waveform were numerically investigated. The stability of the nanocomposite sources under sustained laser pulse excitation was also examined.

3.
Materials (Basel) ; 10(10)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29048345

RESUMO

In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

4.
ACS Appl Mater Interfaces ; 8(7): 4870-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26824127

RESUMO

In this work, we employ dibromocarbene (DBC) radicals to covalently functionalize solution exfoliated graphene via the formation of dibromocyclopropyl adducts. This is achieved using a basic aqueous/organic biphasic reaction mixture to decompose the DBC precursor, bromoform, in conjunction with a phase-transfer catalyst to facilitate ylide formation and carbene migration to graphene substrates. DBC-functionalized graphene (DBC-graphene) was characterized using a range of spectroscopic and analytical techniques to confirm the covalent nature of functionalization. Modified optical and electronic properties of DBC-graphene were investigated using UV-vis spectroscopy, analysis of electrical I-V transport properties, and noncontact terahertz time-domain spectroscopy. The implications of carbene functionalization of graphene are considered in the context of scalable radical functionalization methodologies for bulk-scale graphene processing and controlled band-gap manipulation of graphene.

5.
J Am Chem Soc ; 134(45): 18758-71, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23101481

RESUMO

The covalent chemical functionalization of exfoliated hexagonal boron-nitride nanosheets (BNNSs) is achieved by the solution-phase oxygen radical functionalization of boron atoms in the h-BN lattice. This involves a two-step procedure to initially covalently graft alkoxy groups to boron atoms and the subsequent hydrolytic defunctionalization of the groups to yield hydroxyl-functionalized BNNSs (OH-BNNSs). Characterization of the functionalized-BNNSs using HR-TEM, Raman, UV-vis, FTIR, NMR, and TGA was performed to investigate both the structure of the BNNSs and the covalent functionalization methodology. OH-BNNSs were used to prepare polymer nanocomposites and their mechanical properties analyzed. The influence of the functional groups grafted to the surface of the BNNSs is investigated by demonstrating the impact on mechanical properties of both noncovalent and covalent bonding at the interface between the nanofiller and polymer matrixes.

6.
Chemistry ; 18(35): 10808-12, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22807159

RESUMO

The covalent functionalization of exfoliated hexagonal boron nitride (h-BN) nanosheets by nitrene addition is described. Integration of functionalized h-BN nanosheets within a polycarbonate matrix is demonstrated and was found to afford significant increases in mechanical properties. This integration methodology was further extended by the covalent modification of the h-BN nanosheets with polymer chains of a polycarbonate analogue, and the integration of the polymer modified h-BN within the polymer matrix.

7.
J Phys Chem B ; 109(34): 16310-25, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16853074

RESUMO

This paper reports the findings of a detailed study of the self-assembly of gold nanoparticles at the surface of carbon nanotubes (CNTs). The study included the development of a predictive model for the interactions (charge transfer, van der Waals, osmotic, elastic, nonelastic, and covalent) between tetraoctylammonium bromide-stabilized (TOAB) gold nanoparticles and alkyl- and alkylthiol-modified multiwalled carbon nanotubes (MWCNTs). It also included the measurement of the coverage of gold nanoparticles at the surface of the above MWCNTs as a function of increasing alkyl chain length. One key finding is that it is possible to predict with a high degree of accuracy using the above model the measured coverage of gold nanoparticles adsorbed, either noncovalently or covalently, at the surface of a MWCNT. Another key finding is that, as predicted, under well-defined conditions the measured coverage of nanoparticles is very sensitive to the nature of the modified CNT surface and the contiguous environment, providing valuable insights that will underpin the rational design of functional nanoscale devices assembled from nanoparticle and CNT building blocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA