Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562847

RESUMO

Protein synthesis begins with the formation of a ribosome-mRNA complex. In bacteria, the 30S ribosomal subunit is recruited to many mRNAs through base pairing with the Shine Dalgarno (SD) sequence and RNA binding by ribosomal protein bS1. Translation can initiate on nascent mRNAs and RNA polymerase (RNAP) can promote recruitment of the pioneering 30S subunit. Here we examined ribosome recruitment to nascent mRNAs using cryo-EM, single-molecule fluorescence co-localization, and in-cell crosslinking mass spectrometry. We show that bS1 delivers the mRNA to the ribosome for SD duplex formation and 30S subunit activation. Additionally, bS1 mediates the stimulation of translation initiation by RNAP. Together, our work provides a mechanistic framework for how the SD duplex, ribosomal proteins and RNAP cooperate in 30S recruitment to mRNAs and establish transcription-translation coupling.

2.
Mol Cell ; 82(20): 3885-3900.e10, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36220101

RESUMO

RNA can regulate its own synthesis without auxiliary proteins. For example, U-rich RNA sequences signal RNA polymerase (RNAP) to pause transcription and are required for transcript release at intrinsic terminators in all kingdoms of life. In contrast, the regulatory RNA putL suppresses pausing and termination in cis. However, how nascent RNA modulates its own synthesis remains largely unknown. We present cryo-EM reconstructions of RNAP captured during transcription of putL variants or an unrelated sequence at a U-rich pause site. Our results suggest how putL suppresses pausing and promotes its synthesis. We demonstrate that transcribing a U-rich sequence, a ubiquitous trigger of intrinsic termination, promotes widening of the RNAP nucleic-acid-binding channel. Widening destabilizes RNAP interactions with DNA and RNA to facilitate transcript dissociation reminiscent of intrinsic transcription termination. Surprisingly, RNAP remains bound to DNA after transcript release. Our results provide the structural framework to understand RNA-mediated intrinsic transcription termination.


Assuntos
RNA Polimerases Dirigidas por DNA , RNA , RNA/genética , RNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , DNA , Bactérias/genética , Bactérias/metabolismo , Conformação de Ácido Nucleico
3.
Nat Commun ; 13(1): 1546, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318334

RESUMO

RNA polymerase (RNAP) frequently pauses during the transcription of DNA to RNA to regulate gene expression. Transcription factors NusA and NusG modulate pausing, have opposing roles, but can bind RNAP simultaneously. Here we report cryo-EM reconstructions of Escherichia coli RNAP bound to NusG, or NusA, or both. RNAP conformational changes, referred to as swivelling, correlate with transcriptional pausing. NusA facilitates RNAP swivelling to further increase pausing, while NusG counteracts this role. Their structural effects are consistent with biochemical results on two categories of transcriptional pauses. In addition, the structures suggest a cooperative mechanism of NusA and NusG during Rho-mediated transcription termination. Our results provide a structural rationale for the stochastic nature of pausing and termination and how NusA and NusG can modulate it.


Assuntos
Proteínas de Escherichia coli , Fatores de Transcrição , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Conformação de Ácido Nucleico , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo
4.
Mol Cell ; 75(2): 298-309.e4, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31103420

RESUMO

Regulatory sequences or erroneous incorporations during DNA transcription cause RNA polymerase backtracking and inactivation in all kingdoms of life. Reactivation requires RNA transcript cleavage. Essential transcription factors (GreA and GreB, or TFIIS) accelerate this reaction. We report four cryo-EM reconstructions of Escherichia coli RNA polymerase representing the entire reaction pathway: (1) a backtracked complex; a backtracked complex with GreB (2) before and (3) after RNA cleavage; and (4) a reactivated, substrate-bound complex with GreB before RNA extension. Compared with eukaryotes, the backtracked RNA adopts a different conformation. RNA polymerase conformational changes cause distinct GreB states: a fully engaged GreB before cleavage; a disengaged GreB after cleavage; and a dislodged, loosely bound GreB removed from the active site to allow RNA extension. These reconstructions provide insight into the catalytic mechanism and dynamics of RNA cleavage and extension and suggest how GreB targets backtracked complexes without interfering with canonical transcription.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Complexos Multiproteicos/química , RNA/química , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Complexos Multiproteicos/genética , Ligação Proteica , Conformação Proteica , RNA/genética , Clivagem do RNA/genética , Motivos de Ligação ao RNA/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/genética
5.
J Biol Chem ; 290(13): 8321-30, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25681444

RESUMO

The Ssl1/p44 subunit is a core component of the yeast/mammalian general transcription factor TFIIH, which is involved in transcription and DNA repair. Ssl1/p44 binds to and stimulates the Rad3/XPD helicase activity of TFIIH. To understand the helicase stimulatory mechanism of Ssl1/p44, we determined the crystal structure of the N-terminal regulatory domain of Ssl1 from Saccharomyces cerevisiae. Ssl1 forms a von Willebrand factor A fold in which a central six-stranded ß-sheet is sandwiched between three α helices on both sides. Structural and biochemical analyses of Ssl1/p44 revealed that the ß4-α5 loop, which is frequently found at the interface between von Willebrand factor A family proteins and cellular counterparts, is critical for the stimulation of Rad3/XPD. Yeast genetics analyses showed that double mutation of Leu-239 and Ser-240 in the ß4-α5 loop of Ssl1 leads to lethality of a yeast strain, demonstrating the importance of the Rad3-Ssl1 interactions to cell viability. Here, we provide a structural model for the Rad3/XPD-Ssl1/p44 complex and insights into how the binding of Ssl1/p44 contributes to the helicase activity of Rad3/XPD and cell viability.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/química , Sequência de Aminoácidos , Cristalografia por Raios X , DNA Helicases/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA