Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33139292

RESUMO

A healthy, intact gut microbiota is often resistant to colonization by gastrointestinal pathogens. During periods of dysbiosis, however, organisms such as Clostridioides difficile can thrive. We describe an optimized in vitro colonization resistance assay for C. difficile in stool (CRACS) and demonstrate the utility of this assay by assessing changes in colonization resistance following antibiotic exposure. Fecal samples were obtained from healthy volunteers (n = 6) and from healthy subjects receiving 5 days of moxifloxacin (n = 11) or no antibiotics (n = 10). Samples were separated and either not manipulated (raw) or sterilized (autoclaved or filtered) prior to inoculation with C. difficile ribotype 027 spores and anaerobic incubation for 72 h. Different methods of storing fecal samples were also investigated in order to optimize the CRACS. In healthy, raw fecal samples, incubation with spores did not lead to increased C. difficile total viable counts (TVCs) or cytotoxin detection. In contrast, increased C. difficile TVCs and cytotoxin detection occurred in sterilized healthy fecal samples or those from antibiotic-treated individuals. The CRACS was functional with fecal samples stored at either 4°C or -80°C but not with those stored with glycerol (12% or 30% [vol/vol]). Our data show that the CRACS successfully models in vitro the loss of colonization resistance and subsequent C. difficile proliferation and toxin production. The CRACS could be used as a proxy for C. difficile infection in clinical studies or to determine if an individual is at risk of developing C. difficile infection or other potential infections occurring due to a loss of colonization resistance.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Antibacterianos/farmacologia , Clostridioides , Infecções por Clostridium/tratamento farmacológico , Voluntários Saudáveis , Humanos
2.
J Antimicrob Chemother ; 75(2): 351-361, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778166

RESUMO

BACKGROUND: Aminopenicillins with or without a ß-lactamase inhibitor are widely used in both human and veterinary medicine. However, little is known about their differential impact on the gut microbiota and development of antimicrobial resistance. OBJECTIVES: To investigate changes in the faecal microbiota of dogs treated with amoxicillin or amoxicillin/clavulanic acid. METHODS: Faeces collected from 42 dogs (21 per treatment group) immediately before, during and 1 week after termination of oral treatment with amoxicillin or amoxicillin/clavulanic acid were analysed by culture and 16S rRNA gene sequence analysis. RESULTS: In both groups, bacterial counts on ampicillin selective agar revealed an increase in the proportion of ampicillin-resistant Escherichia coli during treatment, and an increased occurrence and proportion of ampicillin-resistant enterococci during and after treatment. 16S rRNA gene analysis showed reductions in microbial richness and diversity during treatment followed by a return to pre-treatment conditions approximately 1 week after cessation of amoxicillin or amoxicillin/clavulanic acid treatment. While no significant differences were observed between the effects of amoxicillin and amoxicillin/clavulanic acid on microbial richness and diversity, treatment with amoxicillin/clavulanic acid reduced the abundance of taxa that are considered part of the beneficial microbiota (such as Roseburia, Dialister and Lachnospiraceae) and enriched Escherichia, although the latter result was not corroborated by phenotypic counts. CONCLUSIONS: Our results suggest a limited effect of clavulanic acid on selection of antimicrobial resistance and microbial richness when administered orally in combination with amoxicillin. However, combination with this ß-lactamase inhibitor appears to broaden the spectrum of amoxicillin, with potential negative consequences on gut health.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio , Amoxicilina , Cães/microbiologia , Microbiota , Amoxicilina/farmacologia , Amoxicilina/uso terapêutico , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fezes/microbiologia , Testes de Sensibilidade Microbiana , Microbiota/efeitos dos fármacos , RNA Ribossômico 16S/genética , Resistência beta-Lactâmica , beta-Lactamases/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-31636067

RESUMO

Fluoroquinolone treatments induce dysbiosis of the intestinal microbiota, resulting in loss of resistance to colonization by exogenous bacteria such as Clostridioides difficile that may cause severe diarrhea in humans and lethal infection in hamsters. We show here that DAV131A, a charcoal-based adsorbent, decreases the intestinal levels of the fluoroquinolone antibiotics levofloxacin and ciprofloxacin in hamsters, protects their intestinal microbiota, and prevents lethal infection by C. difficile.


Assuntos
Carvão Vegetal/administração & dosagem , Clostridioides difficile , Infecções por Clostridium/prevenção & controle , Administração Oral , Adsorção , Animais , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Ciprofloxacina/efeitos adversos , Ciprofloxacina/farmacocinética , Clostridioides difficile/patogenicidade , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Disbiose/metabolismo , Disbiose/prevenção & controle , Fluoroquinolonas/efeitos adversos , Fluoroquinolonas/farmacocinética , Microbioma Gastrointestinal/efeitos dos fármacos , Levofloxacino/efeitos adversos , Levofloxacino/farmacocinética , Masculino , Mesocricetus
4.
Front Vet Sci ; 6: 279, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31544108

RESUMO

Quantitative data on fecal shedding of antimicrobial-resistant bacteria are crucial to assess the risk of transmission from dogs to humans. Our first objective was to investigate the prevalence of quinolone/fluoroquinolone-resistant and beta-lactam-resistant Enterobacteriaceae in dogs in France and Spain. Due to the particular concern about possible transmission of extended-spectrum cephalosporin (ESC)-resistant isolates from dogs to their owners, we characterized the ESBL/pAmpC producers collected from dogs. Rectal swabs from 188 dogs, without signs of diarrhea and that had not received antimicrobials for 4 weeks before the study, were quantified for total and resistant Enterobacteriaceae on selective media alone or containing relevant antibiotic concentrations. Information that might explain antibiotic resistance was collected for each dog. Extended-spectrum cephalosporin-resistant isolates were subjected to bacterial species identification (API20E), genetic lineage characterization (MLST), ESBL/pAmpC genes identification (sequencing), and plasmid characterization (pMLST). Regarding beta-lactam resistance, amoxicillin- (AMX) and cefotaxime- (CTX) resistant Enterobacteriaceae were detected in 70 and 18% of the dogs, respectively, whereas for quinolone/fluoroquinolone-resistance, Nalidixic acid- (NAL) and ciprofloxacin- (CIP) resistant Enterobacteriaceae were detected in 36 and 18% of the dogs, respectively. Medical rather than preventive consultation was a risk marker for the presence of NAL and CIP resistance. CTX resistance was mainly due to a combination of specific ESBL/pAmpC genes and particular conjugative plasmids already identified in human patients: bla CTX-M-1/IncI1/ST3 (n = 4), bla CMY-2/IncI1/ST12 (n = 2), and bla CTX-M-15/IncI1/ST31 (n = 1). bla SHV-12 (n = 3) was detected in various plasmid lineages (InI1/ST3, IncI1/ST26, and IncFII). ESBL/pAmpC plasmids were located in different genetic lineages of E. coli, with the exception of two strains in France (ST6998) and two in Spain (ST602). Our study highlights dogs as a potential source of Q/FQ-resistant and ESBL/pAmpC-producing bacteria that might further disseminate to humans, and notably a serious risk of future acquisition of CTX-M-1 and CMY-2 plasmids by the owners of dogs.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30061286

RESUMO

Antibiotic disruption of the intestinal microbiota favors colonization by Clostridium difficile Using a charcoal-based adsorbent to decrease intestinal antibiotic concentrations, we studied the relationship between antibiotic concentrations in feces and the intensity of dysbiosis and quantified the link between this intensity and mortality. We administered either moxifloxacin (n = 70) or clindamycin (n = 60) to hamsters by subcutaneous injection from day 1 (D1) to D5 and challenged them with a C. difficile toxigenic strain at D3 Hamsters received various doses of a charcoal-based adsorbent, DAV131A, to modulate intestinal antibiotic concentrations. Gut dysbiosis was evaluated at D0 and D3 using diversity indices determined from 16S rRNA gene profiling. Survival was monitored until D16 We analyzed the relationship between fecal antibiotic concentrations and dysbiosis at the time of C. difficile challenge and studied their capacity to predict subsequent death of the animals. Increasing doses of DAV131A reduced fecal concentrations of both antibiotics, lowered dysbiosis, and increased survival from 0% to 100%. Mortality was related to the level of dysbiosis (P < 10-5 for the change of Shannon index in moxifloxacin-treated animals and P < 10-9 in clindamycin-treated animals). The Shannon diversity index and unweighted UniFrac distance best predicted death, with areas under the receiver operating curve (ROC) of 0.89 (95% confidence interval [CI], 0.82, 0.95) and 0.95 (0.90, 0.98), respectively. Altogether, moxifloxacin and clindamycin disrupted the diversity of the intestinal microbiota with a dependency on the DAV131A dose; mortality after C. difficile challenge was related to the intensity of dysbiosis in similar manners with the two antibiotics.


Assuntos
Antibacterianos/efeitos adversos , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/mortalidade , Disbiose/induzido quimicamente , Animais , Antibacterianos/uso terapêutico , Clindamicina/uso terapêutico , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/patogenicidade , Cricetinae , Disbiose/mortalidade , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Mesocricetus , Moxifloxacina/uso terapêutico
6.
Artigo em Inglês | MEDLINE | ID: mdl-28739791

RESUMO

Lowering the gut exposure to antibiotics during treatments can prevent microbiota disruption. We evaluated the effects of an activated charcoal-based adsorbent, DAV131A, on the fecal free moxifloxacin concentration and mortality in a hamster model of moxifloxacin-induced Clostridium difficile infection. A total of 215 hamsters receiving moxifloxacin subcutaneously (day 1 [D1] to D5) were orally infected at D3 with C. difficile spores. They received various doses (0 to 1,800 mg/kg of body weight/day) and schedules (twice a day [BID] or three times a day [TID]) of DAV131A (D1 to D8). Moxifloxacin concentrations and C. difficile counts were determined at D3, and mortality was determined at D12 We compared mortality rates, moxifloxacin concentrations, and C. difficile counts according to DAV131A regimen and modeled the links between DAV131A regimen, moxifloxacin concentration, and mortality. All hamsters that received no DAV131A died, but none of those that received 1,800 mg/kg/day died. Significant dose-dependent relationships between DAV131A dose and (i) mortality, (ii) moxifloxacin concentration, and (iii) C. difficile count were evidenced. Mathematical modeling suggested that (i) lowering the moxifloxacin concentration at D3, which was 58 µg/g (95% confidence interval [CI] = 50 to 66 µg/g) without DAV131A, to 17 µg/g (14 to 21 µg/g) would reduce mortality by 90%; and (ii) this would be achieved with a daily DAV131A dose of 703 mg/kg (596 to 809 mg/kg). In this model of C. difficile infection, DAV131A reduced mortality in a dose-dependent manner by decreasing the fecal free moxifloxacin concentration.


Assuntos
Clostridioides difficile/patogenicidade , Infecções por Clostridium/induzido quimicamente , Disbiose/induzido quimicamente , Enterocolite Pseudomembranosa/induzido quimicamente , Fluoroquinolonas/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Animais , Carvão Vegetal/farmacologia , Infecções por Clostridium/tratamento farmacológico , Cricetinae , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Enterocolite Pseudomembranosa/tratamento farmacológico , Enterocolite Pseudomembranosa/mortalidade , Fluoroquinolonas/farmacologia , Trato Gastrointestinal/microbiologia , Moxifloxacina
7.
Arterioscler Thromb Vasc Biol ; 32(4): 894-901, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22267483

RESUMO

OBJECTIVE: Although von Willebrand factor (VWF) is a heavily glycosylated protein, its potential to associate with glycan-binding proteins is poorly investigated. Here, we explored its interaction with the glycan-binding proteins galectin-1 and galectin-3. METHODS AND RESULTS: Immunofluorescence analysis using Duolink proximity ligation assays revealed that VWF colocalizes with galectin-1 and galectin-3 in endothelial cells, both before and after stimulation of endothelial cells. Moreover, galectin-1 was found along the typical VWF bundles that are released by endothelial cells. Galectin-1 and galectin-3 could be coprecipitated with VWF from plasma in immunoprecipitation assays, whereas plasma levels of galectin-1 and galectin-3 were significantly reduced in VWF-deficient mice. Binding studies using purified proteins confirmed that VWF could directly interact with both galectins, predominantly via its N-linked glycans. In search of the physiological relevance of the VWF-galectin interaction, we found that inhibition of galectins in in vitro perfusion assays was associated with increased VWF-platelet string formation, a phenomenon that was reproduced in galectin-1/galectin-3 double-deficient mice. These mice were also characterized by a more rapid formation of initial thrombi following ferric chloride-induced injury. CONCLUSIONS: We have identified galectin-1 and galectin-3 as novel partners for VWF, and these proteins may modulate VWF-mediated thrombus formation.


Assuntos
Galectina 1/metabolismo , Galectina 3/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator de von Willebrand/metabolismo , Animais , Células Cultivadas , Cloretos , Modelos Animais de Doenças , Compostos Férricos , Galectina 1/sangue , Galectina 1/deficiência , Galectina 1/genética , Galectina 3/sangue , Galectina 3/deficiência , Galectina 3/genética , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Adesividade Plaquetária , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Trombose/sangue , Trombose/induzido quimicamente , Trombose/genética , Fatores de Tempo , Fator de von Willebrand/genética
8.
Blood ; 119(9): 2126-34, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22234691

RESUMO

The relationship between low-density lipoprotein receptor-related protein-1 (LRP1) and von Willebrand factor (VWF) has remained elusive for years. Indeed, despite a reported absence of interaction between both proteins, liver-specific deletion of LRP1 results in increased VWF levels. To investigate this discrepancy, we used mice with a macrophage-specific deficiency of LRP1 (macLRP1(-)) because we previously found that macrophages dominate VWF clearance. Basal VWF levels were increased in macLRP1(-) mice compared with control mice (1.6 ± 0.4 vs 1.0 ± 0.4 U/mL). Clearance experiments revealed that half-life of human VWF was significantly increased in macLRP1(-) mice. Ubiquitous blocking of LRP1 or additional lipoprotein receptors by overexpressing receptor-associated protein in macLRP1(-) mice did not result in further rise of VWF levels (0.1 ± 0.2 U/mL), in contrast to macLRP1(+) mice (rise in VWF, 0.8 ± 0.4 U/mL). This points to macLRP1 being the only lipoprotein receptor regulating VWF levels. When testing the mechanism(s) involved, we observed that VWF-coated beads adhered efficiently to LRP1 but only when exposed to shear forces exceeding 2.5 dyne/cm(2), implying the existence of shear stress-dependent interactions. Furthermore, a mechanism involving ß2-integrins that binds both VWF and LRP1 also is implicated because inhibition of ß2-integrins led to increased VWF levels in control (rise, 0.19 ± 0.16 U/mL) but not in macLRP1(-) mice (0.08 ± 0.15 U/mL).


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Macrófagos/metabolismo , Fator de von Willebrand/metabolismo , Animais , Fator VIII/metabolismo , Humanos , Cadeias beta de Integrinas/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Receptores de LDL/antagonistas & inibidores , Resistência ao Cisalhamento
9.
Immunol Allergy Clin North Am ; 31(2): 407-19, xii, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21530828

RESUMO

Allergen-specific immunotherapy represents a curative treatment of type I allergies. Subcutaneous immunotherapy is conducted with allergens adsorbed on aluminum hydroxide or calcium phosphate particles, whereas sublingual immunotherapy relies on high doses of soluble allergen without any immunopotentiator. There is a potential benefit of adjuvants enhancing regulatory and Th1 CD4+T cell responses during specific immunotherapy. Molecules affecting dendritic cells favor the induction of T regulatory cell and Th1 responses and represent valid candidate adjuvants for allergy vaccines. Furthermore, the interest in viruslike particles and mucoadhesive particulate vector systems, which may better address the allergen(s) to tolerogenic antigen-presenting cells, is documented.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Alérgenos/administração & dosagem , Dessensibilização Imunológica , Hipersensibilidade/terapia , Vacinas/imunologia , Administração Cutânea , Administração Sublingual , Animais , Sistemas de Liberação de Medicamentos , Humanos , Hipersensibilidade/imunologia
10.
J Allergy Clin Immunol ; 122(3): 603-9.e5, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18774396

RESUMO

BACKGROUND: A detailed characterization of oral antigen-presenting cells is critical to improve second-generation sublingual allergy vaccines. OBJECTIVE: To characterize oral dendritic cells (DCs) within lingual and buccal tissues from BALB/c mice with respect to their surface phenotype, distribution, and capacity to polarize CD4(+) T-cell responses. METHODS: In situ analysis of oral DCs was performed by immunohistology. Purified DCs were tested in vitro for their capacity to capture, process, and present the ovalbumin antigen to naive CD4(+) T cells. In vivo priming of ovalbumin-specific T cells adoptively transferred to BALB/c mice was analyzed by cytofluorometry in cervical lymph nodes after sublingual administration of mucoadhesive ovalbumin. RESULTS: Three subsets of oral DCs with a distinct tissue distribution were identified: (1) a minor subset of CD207(+) Langerhans cells located in the mucosa itself, (2) a major subpopulation of CD11b(+)CD11c(-) and CD11b(+)CD11c(+) myeloid DCs at the mucosal/submucosal interface, and (3) B220(+)120G8(+) plasmacytoid DCs found in submucosal tissues. Purified myeloid and plasmacytoid oral DCs capture and process the antigen efficiently and are programmed to elicit IFN-gamma and/or IL-10 production together with a suppressive function in naive CD4(+) T cells. Targeting the ovalbumin antigen to oral DCs in vivo by using mucoadhesive particles establishes tolerance in the absence of cell depletion through the stimulation of IFN-gamma and IL-10-producing CD4(+) regulatory T cells in cervical lymph nodes. CONCLUSION: The oral immune system is composed of various subsets of tolerogenic DCs organized in a compartmentalized manner and programmed to induce T(H)1/regulatory T-cell responses.


Assuntos
Células Dendríticas/imunologia , Tolerância Imunológica , Boca/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Bucal/imunologia , Ovalbumina/imunologia , Linfócitos T Reguladores/metabolismo , Células Th1/metabolismo , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Língua/imunologia
11.
Int Arch Allergy Immunol ; 145(2): 152-62, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17848808

RESUMO

BACKGROUND: IL-10-inducing adjuvants could enhance the efficacy of allergy vaccines in establishing allergen-specific tolerance. The aim of this study was to identify such adjuvants using in vitro cultures of human and murine cells and to evaluate them in a therapeutic murine model of sublingual immunotherapy (SLIT). METHODS: Adjuvants stimulating IL-10 gene expression by human or murine immune cells were tested sublingually in BALB/c mice sensitized to ovalbumin (OVA), assessing the reduction in airway hyperresponsiveness (AHR) by whole-body plethysmography. The induction of regulatory T cells (T(reg)) was evaluated using phenotypic and functional assays. T-cell proliferation in cervical lymph nodes (LNs) was assessed following intravenous transfer of CFSE-labelled OVA-specific T cells and FACS analysis. RESULTS: A combination of 1,25-dihydroxyvitamin D3 plus dexamethasone (VitD3/Dex) as well as Lactobacillus plantarum were found to induce IL-10 production by human and murine dendritic cells (DCs). The former inhibits LPS-induced DC maturation, whereas L. plantarum induces DC maturation. Following stimulation with VitD3/Dex-pretreated DCs, CD4+ naïve T cells exhibit a T(reg) profile. In contrast, a Th1/T(reg) pattern of differentiation is observed in the presence of DCs treated with L. plantarum. Both adjuvants significantly enhance SLIT efficacy in mice, in association with either induction of Foxp3+ T(reg) cells (for VitD3/Dex) or proliferation of OVA-specific T cells in cervical LNs (for L. plantarum). CONCLUSIONS: Both VitD3/Dex and L. plantarum polarize naïve T cells towards IL-10-expressing T cells, through distinct mechanisms. As adjuvants, they both enhance SLIT efficacy in a murine asthma model.


Assuntos
Adjuvantes Imunológicos/farmacologia , Asma/terapia , Calcitriol/farmacologia , Células Dendríticas/efeitos dos fármacos , Dessensibilização Imunológica , Dexametasona/farmacologia , Interleucina-10/biossíntese , Lactobacillus plantarum/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Administração Sublingual , Animais , Calcitriol/administração & dosagem , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/imunologia , Células Dendríticas/imunologia , Dexametasona/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Interleucina-10/genética , Lacticaseibacillus rhamnosus/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Ovalbumina/toxicidade , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia
12.
J Allergy Clin Immunol ; 120(2): 278-85, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17531296

RESUMO

BACKGROUND: Sublingual immunotherapy is a noninvasive and efficacious treatment of type I respiratory allergies. A murine model of sublingual immunotherapy is needed to understand better the immune mechanisms involved in successful immunotherapy and to assess second-generation candidate vaccines. OBJECTIVE: Herein, we developed a therapeutic murine model of sublingual immunotherapy in which we document the value of mucoadhesive formulations to enhance treatment efficacy. METHODS: BALB/c mice were sublingually treated with soluble or formulated ovalbumin before or after sensitization with ovalbumin. Airways hyperresponsiveness and lung inflammation were assessed by whole-body plethysmography and lung histology, respectively. Humoral and cellular immune responses were monitored by ELISA and ELISPOT techniques. RESULTS: Prophylactic sublingual administration of ovalbumin completely prevents airways hyperresponsiveness as well as IL-5 secretion and IgE induction. Therapeutic administration of ovalbumin as a solution via either the sublingual or oral route has a limited efficacy. In contrast, sublingual application of ovalbumin formulated with maltodextrin to enhance mucosal adhesion results in a major reduction of established airways hyperresponsiveness, lung inflammation, and IL-5 production in splenocytes. This mucoadhesive formulation significantly enhances ovalbumin-specific T-cell proliferation in cervical but not mesenteric lymph nodes, and IgA production in the lungs. CONCLUSION: A mucoadhesive maltodextrin formulation of ovalbumin enhances priming of the local mucosal immune system and tolerance induction via the sublingual route. CLINICAL IMPLICATIONS: Mucoadhesive formulations offer the opportunity to improve dramatically sublingual immunotherapy in human beings, most particularly by simplifying immunization schemes.


Assuntos
Alérgenos/administração & dosagem , Imunoterapia/métodos , Mucosa Bucal , Adesivos Teciduais , Administração Sublingual , Alérgenos/uso terapêutico , Animais , Asma/imunologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/prevenção & controle , Hiper-Reatividade Brônquica/terapia , Bronquite/imunologia , Bronquite/terapia , Proliferação de Células/efeitos dos fármacos , Feminino , Imunização , Imunoglobulina A/biossíntese , Imunoglobulina E/biossíntese , Imunoglobulina E/efeitos dos fármacos , Interleucina-10/antagonistas & inibidores , Interleucina-10/biossíntese , Interleucina-5/antagonistas & inibidores , Interleucina-5/metabolismo , Pulmão/metabolismo , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Ovalbumina/uso terapêutico , Mucosa Respiratória/metabolismo , Baço/metabolismo , Linfócitos T/citologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA