RESUMO
Hematopoietic stem cells (HSCs) react to various stress conditions. However, it is unclear whether and how HSCs respond to severe anemia. Here, we demonstrate that upon induction of acute anemia, HSCs rapidly proliferate and enhance their erythroid differentiation potential. In severe anemia, lipoprotein profiles largely change and the concentration of ApoE increases. In HSCs, transcription levels of lipid metabolism-related genes, such as very low-density lipoprotein receptor (Vldlr), are upregulated. Stimulation of HSCs with ApoE enhances their erythroid potential, whereas HSCs in Apoe knockout mice do not respond to anemia induction. VldlrhighHSCs show higher erythroid potential, which is enhanced after acute anemia induction. VldlrhighHSCs are epigenetically distinct because of their low chromatin accessibility, and more chromatin regions are closed upon acute anemia induction. Chromatin regions closed upon acute anemia induction are mainly binding sites of Erg. Inhibition of Erg enhanced the erythroid differentiation potential of HSCs. Our findings indicate that lipoprotein metabolism plays an important role in HSC regulation under severe anemic conditions.
Assuntos
Anemia , Apolipoproteínas E , Diferenciação Celular , Células-Tronco Hematopoéticas , Lipoproteínas , Animais , Anemia/metabolismo , Anemia/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Lipoproteínas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/metabolismo , Receptores de LDL/genética , Masculino , Cromatina/metabolismo , Eritropoese/genética , Células Eritroides/metabolismoRESUMO
BACKGROUND: During mouse embryonic development, definitive hematopoiesis is first detected around embryonic day (E) 10.5 in the aorta-gonad-mesonephros (AGM) region. Hematopoietic stem cells (HSCs) arise in the dorsal aorta's intra-aortic hematopoietic cell clusters (IAHCs). We have previously reported that a transcription factor Sox17 is expressed in IAHCs, and that, among them, CD45lowc-Kithigh cells have high hematopoietic activity. Furthermore, forced expression of Sox17 in this population of cells can maintain the formation of hematopoietic cell clusters. However, how Sox17 does so, particularly downstream signaling involved, remains poorly understood. The purpose of this study is to search for new Sox17 targets which contribute to cluster formation with hematopoietic activity. METHODS: RNA-sequencing (RNA-seq) analysis was done to identify genes that are upregulated in Sox17-expressing IAHCs as compared with Sox17-negative ones. Among the top 7 highly expressed genes, Rasip1 which had been reported to be a vascular-specific regulator was focused on in this study, and firstly, the whole-mount immunostaining was done. We conducted luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay to examine whether Sox17 regulates Rasip1 gene expression via binding to its enhancer element. We also analyzed the cluster formation and the multilineage colony-forming ability of Rasip1-transduced cells and Rasip1-knockdown Sox17-transduced cells. RESULTS: The increase of the Rasip1 expression level was observed in Sox17-positive CD45lowc-Kithigh cells as compared with the Sox17-nonexpressing control. Also, the expression level of the Rasip1 gene was increased by the Sox17-nuclear translocation. Rasip1 was expressed on the membrane of IAHCs, overlapping with the endothelial cell marker, CD31, and hematopoietic stem/progenitor marker (HSPC), c-Kit. Rasip1 expression was observed in most part of c-Kit+Sox17+ cells in IAHCs. Luciferase reporter assay and ChIP assay indicated that one of the five putative Sox17-binding sites in the Rasip1 enhancer region was important for Rasip1 expression via Sox17 binding. Rasip1 knockdown in Sox17-transduced cells decreased the cluster formation and diminished the colony-forming ability, while overexpression of Rasip1 in CD45lowc-Kithigh cells led to a significant but transient increase in hematopoietic activity. CONCLUSIONS: Rasip1 knockdown in Sox17-transduced CD45lowc-Kithigh cells displayed a significant decrease in the multilineage colony-forming ability and the cluster size. Rasip1 overexpression in Sox17-untransduced CD45lowc-Kithigh cells led to a significant but transient increase in the multilineage colony-forming ability, suggesting the presence of a cooperating factor for sustained hematopoietic activity.
RESUMO
Isolation of long-term hematopoietic stem cell (HSC) is possible by utilizing flow cytometry with multiple cell surface markers. However, those cell surface phenotypes do not represent functional HSCs after in vitro culture. Here we show that cultured HSCs express mast cell-related genes including Cd244. After in vitro culture, phenotypic HSCs were divided into CD244- and CD244+ subpopulations, and only CD244- cells that have low mast cell gene expression and maintain HSC-related genes sustain reconstitution potential. The result was same when HSCs were cultured in an efficient expansion medium containing polyvinyl alcohol. Chemically induced endoplasmic reticulum (ER) stress signal increased the CD244+ subpopulation, whereas ER stress suppression using a molecular chaperone, TUDCA, decreased CD244+ population, which was correlated to improved reconstitution output. These data suggest CD244 is a potent marker to exclude non-functional HSCs after in vitro culture thereby useful to elucidate mechanism of functional decline of HSCs during ex vivo treatment.
RESUMO
Hematopoietic stem cell-containing intra-aortic hematopoietic cell clusters (IAHCs) emerge in the dorsal aorta of the aorta-gonad-mesonephros (AGM) region during midgestation mouse embryos. We previously showed that transduction of Sox17 in CD45lowc-Kithigh cells, which are one component of IAHCs, maintained the cluster formation and the undifferentiated state, but the mechanism of the cluster formation by Sox17 has not been clarified. By microarray gene expression analysis, we found that genes for vascular endothelial-cadherin (VE-cad) and endothelial cell-selective adhesion molecule (ESAM) were expressed at high levels in Sox17-transduced c-Kit+ cells. Here we show the functional role of these adhesion molecules in the formation of IAHCs and the maintenance of the undifferentiated state by in vitro experiments. We detected VE-cad and ESAM expression in endothelial cells of dorsal aorta and IAHCs in E10.5 embryos by whole mount immunohistochemistry. Cells with the middle expression level of VE-cad and the low expression level of ESAM had the highest colony-forming ability. Tamoxifen-dependent nuclear translocation of Sox17-ERT fusion protein induced the formation of cell clusters and the expression of Cdh5 (VE-cad) and ESAM genes. We showed the induction of the Cdh5 (VE-cad) and ESAM expression and the direct interaction of Sox17 with their promoter by luciferase assay and chromatin immunoprecipitation assay, respectively. Moreover, shRNA-mediated knockdown of either Cdh5 (VE-cad) or ESAM gene in Sox17-transduced cells decreased the multilineage-colony forming potential. These findings suggest that VE-cad and ESAM play an important role in the high hematopoietic activity of IAHCs and cluster formation.
Assuntos
Antígenos CD/genética , Caderinas/genética , Moléculas de Adesão Celular/genética , Diferenciação Celular/genética , Proteínas HMGB/genética , Hematopoese/genética , Fatores de Transcrição SOXF/genética , Animais , Aorta/crescimento & desenvolvimento , Aorta/metabolismo , Caderinas/antagonistas & inibidores , Moléculas de Adesão Celular/antagonistas & inibidores , Embrião de Mamíferos , Células Endoteliais/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas HMGB/antagonistas & inibidores , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Gravidez , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição SOXF/antagonistas & inibidoresRESUMO
The aorta-gonad-mesonephros region, from which definitive hematopoiesis first arises in midgestation mouse embryos, has intra-aortic hematopoietic clusters (IAHCs) containing hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). We previously reported expression of the transcription factor Sox17 in IAHCs, and overexpression of Sox17 in CD45lowc-KIThigh cells comprising IAHCs maintains the formation of cell clusters and their multipotency in vitro over multiple passages. Here, we demonstrate the importance of NOTCH1 in IAHC formation and maintenance of the HSC/HPC phenotype. We further show that Notch1 expression is positively regulated by SOX17 via direct binding to its gene promoter. SOX17 and NOTCH1 were both found to be expressed in vivo in cells of IAHCs by whole mount immunostaining. We found that cells transduced with the active form of NOTCH1 or its downstream target, Hes1, maintained their multipotent colony-forming capacity in semisolid medium. Moreover, cells stimulated by NOTCH1 ligand, Jagged1, or Delta-like protein 1, had the capacity to form multilineage colonies. Conversely, knockdown of Notch1 and Hes1 led to a reduction of their multipotent colony-forming capacity. These results suggest that the Sox17-Notch1-Hes1 pathway is critical for maintaining the undifferentiated state of IAHCs.
Assuntos
Aorta/metabolismo , Proteínas HMGB/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição HES-1/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Feto/metabolismo , Gônadas/metabolismo , Mesonefro/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Regiões Promotoras Genéticas/fisiologiaRESUMO
In the midgestation mouse embryo, hematopoietic cell clusters containing hematopoietic stem/progenitor cells arise in the aorta-gonad-mesonephros (AGM) region. We have previously reported that forced expression of the Sox17 transcription factor in CD45lowc-Kithigh AGM cells, which are the hematopoietic cellular component of the cell clusters, and subsequent coculture with OP9 stromal cells in the presence of three cytokines, stem cell factor (SCF), interleukin-3 (IL-3), and thrombopoietin (TPO), led to the formation and the maintenance of cell clusters with cells at an undifferentiated state in vitro. In this study, we investigated the role of each cytokine in the formation of hematopoietic cell clusters. We cultured Sox17-transduced AGM cells with each of the 7 possible combinations of the three cytokines. The size and the number of Sox17-transduced cell clusters in the presence of TPO, either alone or in combination, were comparable to that observed with the complete set of the three cytokines. Expression of TPO receptor, c-Mpl was almost ubiquitously expressed and maintained in Sox17-transduced hematopoietic cell clusters. In addition, the expression level of c-Mpl was highest in the CD45lowc-Kithigh cells among the Sox17-transduced cell clusters. Moreover, c-Mpl protein was highly expressed in the intra-aortic hematopoietic cell clusters in comparison with endothelial cells of dorsal aorta. Finally, stimulation of the endothelial cells prepared from the AGM region by TPO induced the production of hematopoietic cells. These results suggest that TPO contributes to the formation and the maintenance of hematopoietic cell clusters in the AGM region.
Assuntos
Aorta/citologia , Gônadas/citologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/citologia , Trombopoetina/fisiologia , Animais , Aorta/embriologia , Aorta/metabolismo , Células Cultivadas , Gônadas/embriologia , Gônadas/metabolismo , Interleucina-3/fisiologia , Mesonefro/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Receptores de Trombopoetina/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais , Fator de Células-Tronco/fisiologia , Transdução GenéticaRESUMO
Sry related high mobility group box 17 (Sox17), which is a marker of endodermal cells and a transcriptional regulator, has a critical role in the maintenance of fetal and neonatal hematopoietic stem cells (HSC). Sox17 has been identified as a key regulator of the development and differentiation of fetal hematopoietic progenitors from the aorta-gonad-mesonephros (AGM) region. The co-culture of Sox17-transduced hematopoietic progenitor cells (CD45(low) c-Kit(high) cells) from AGM regions on OP9 stromal cells gives rise to multipotential hematopoietic stem/progenitor cells. Here, we show that in a primary transplantation experiment, Sox17-transduction in CD45(low) c-Kit(high) cells of embryonic day (E) 10.5 AGM increased the absolute number of common myeloid progenitors (CMPs) in the bone marrow (BM) of recipient mice in comparison to that of granulocyte/macrophage progenitors (GMPs) and the megakaryocyte/erythroid progenitors (MEPs). When Sox17-transduced cells were cultured with OP9 stromal cells, Sox17-transduced GMPs (Sox17-GMPs), Sox17-transduced CMPs (Sox17-CMPs), and Sox17-transduced MEPs (Sox17-MEPs) were generated. Sox17-GMPs and Sox17-CMPs maintained their self-renewal capacity and the hematopoietic ability upon co-culture with the OP9 stromal cells for some passages. Moreover, Sox17-GMPs exhibited the increase in expression of c-Mpl and GATA-2 in comparison to GMPs of BM and Sox17-CMPs showed the increase in expression of c-Mpl, NF-E2, and ß-globin genes in comparison to CMPs of BM. Furthermore, when Sox17-transduced cells were cultured in methylcellulose to examine the colony-forming ability, Sox17-GMPs and Sox17-CMPs maintained the formation of mixed colonies for some passages. Taken together, Sox17 is suggested to regulate the maintenance and differentiation of hematopoietic progenitors derived from AGM regions at midgestation, in particular myeloid progenitors.
Assuntos
Proteínas HMGB/metabolismo , Células Mieloides/citologia , Fatores de Transcrição SOXF/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Técnicas de Cocultura , Proteínas HMGB/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células Progenitoras de Megacariócitos e Eritrócitos/citologia , Células Progenitoras de Megacariócitos e Eritrócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXF/genéticaRESUMO
During mouse development, definitive hematopoiesis is first detected around embryonic day 10.5 (E10.5) in the aorta-gonad-mesonephros (AGM) region, which exhibits intra-aortic cell clusters. These clusters are known to contain hematopoietic stem cells (HSCs). On the other hand, it is not clear how the cells in such clusters maintain their HSC phenotype and how they are triggered to differentiate. Here we found that an endodermal transcription factor marker, Sox17, and other F-group (SoxF) proteins, Sox7 and Sox18, were expressed in E10.5 intra-aortic cell clusters. Forced expression of any of these SoxF proteins, particularly Sox17, in E10.5 AGM CD45(low) c-Kit(high) cells, which are the major component of intra-aortic clusters, led to consistent formation of cell clusters in vitro during several passages of cocultures with stromal cells. Cluster-forming cells with constitutive Sox17 expression retained long-term bone marrow reconstitution activity in vivo. Notably, shutdown of exogenously introduced Sox17 gene expression resulted in immediate hematopoietic differentiation. These results indicate that SoxF proteins, especially Sox17, contribute to the maintenance of cell clusters containing HSCs in the midgestation AGM region. Furthermore, SoxF proteins play a pivotal role in controlling the HSC fate decision between indefinite self-renewal and differentiation during fetal hematopoiesis.