Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Nature ; 631(8019): 170-178, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768632

RESUMO

Epigenetic reprogramming resets parental epigenetic memories and differentiates primordial germ cells (PGCs) into mitotic pro-spermatogonia or oogonia. This process ensures sexually dimorphic germ cell development for totipotency1. In vitro reconstitution of epigenetic reprogramming in humans remains a fundamental challenge. Here we establish a strategy for inducing epigenetic reprogramming and differentiation of pluripotent stem-cell-derived human PGC-like cells (hPGCLCs) into mitotic pro-spermatogonia or oogonia, coupled with their extensive amplification (about >1010-fold). Bone morphogenetic protein (BMP) signalling is a key driver of these processes. BMP-driven hPGCLC differentiation involves attenuation of the MAPK (ERK) pathway and both de novo and maintenance DNA methyltransferase activities, which probably promote replication-coupled, passive DNA demethylation. hPGCLCs deficient in TET1, an active DNA demethylase abundant in human germ cells2,3, differentiate into extraembryonic cells, including amnion, with de-repression of key genes that bear bivalent promoters. These cells fail to fully activate genes vital for spermatogenesis and oogenesis, and their promoters remain methylated. Our study provides a framework for epigenetic reprogramming in humans and an important advance in human biology. Through the generation of abundant mitotic pro-spermatogonia and oogonia-like cells, our results also represent a milestone for human in vitro gametogenesis research and its potential translation into reproductive medicine.


Assuntos
Reprogramação Celular , Metilação de DNA , Epigênese Genética , Células Germinativas , Proteínas Proto-Oncogênicas , Humanos , Masculino , Reprogramação Celular/genética , Metilação de DNA/genética , Células Germinativas/metabolismo , Células Germinativas/citologia , Feminino , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/deficiência , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Espermatogônias/citologia , Espermatogônias/metabolismo , Espermatogênese/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Sistema de Sinalização das MAP Quinases , Regiões Promotoras Genéticas/genética , Oogênese/genética , Mitose/genética , Oxigenases de Função Mista
2.
Biochem Biophys Res Commun ; 722: 150155, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38795454

RESUMO

Runt-related transcription factor (RUNX) family members play critical roles in the development of multiple organs. Mammalian RUNX family members, consisting of RUNX1, RUNX2, and RUNX3, have distinct tissue-specific expression and function. In this study, we examined the spatiotemporal expression patterns of RUNX family members in developing kidneys and analyzed the role of RUNX1 during kidney development. In the developing mouse kidney, RUNX1 protein was strongly expressed in the ureteric bud (UB) tip and weakly expressed in the distal segment of the renal vesicle (RV), comma-shaped body (CSB), and S-shaped body (SSB). In contrast, RUNX2 protein was restricted to the stroma, and RUNX3 protein was only expressed in immune cells. We also analyzed the expression of RUNX family members in the cynomolgus monkey kidney. We found that expression patterns of RUNX2 and RUNX3 were conserved between rodents and primates, whereas RUNX1 was only expressed in the UB tip, not in the RV, CSB, or SSB of cynomolgus monkeys, suggesting a species differences. We further evaluated the roles of RUNX1 using two different conditional knockout mice: Runx1f/f:HoxB7-Cre and Runx1f/f:R26-CreERT2 and found no abnormalities in the kidney. Our findings showed that RUNX1, which is mainly expressed in the UB tip, is not essential for kidney development.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Rim , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Rim/metabolismo , Rim/embriologia , Rim/crescimento & desenvolvimento , Camundongos , Macaca fascicularis , Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Subunidades alfa de Fatores de Ligação ao Core/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
BMC Genomics ; 25(1): 344, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580899

RESUMO

BACKGROUND: Genome-wide DNA demethylation occurs in mammalian primordial germ cells (PGCs) as part of the epigenetic reprogramming important for gametogenesis and resetting the epigenetic information for totipotency. Dppa3 (also known as Stella or Pgc7) is highly expressed in mouse PGCs and oocytes and encodes a factor essential for female fertility. It prevents excessive DNA methylation in oocytes and ensures proper gene expression in preimplantation embryos: however, its role in PGCs is largely unexplored. In the present study, we investigated whether or not DPPA3 has an impact on CG methylation/demethylation in mouse PGCs. RESULTS: We show that DPPA3 plays a role in genome-wide demethylation in PGCs even before sex differentiation. Dppa3 knockout female PGCs show aberrant hypermethylation, most predominantly at H3K9me3-marked retrotransposons, which persists up to the fully-grown oocyte stage. DPPA3 works downstream of PRDM14, a master regulator of epigenetic reprogramming in embryonic stem cells and PGCs, and independently of TET1, an enzyme that hydroxylates 5-methylcytosine. CONCLUSIONS: The results suggest that DPPA3 facilitates DNA demethylation through a replication-coupled passive mechanism in PGCs. Our study identifies DPPA3 as a novel epigenetic reprogramming factor in mouse PGCs.


Assuntos
Proteínas Cromossômicas não Histona , Desmetilação do DNA , Epigênese Genética , Animais , Feminino , Camundongos , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Genoma , Células Germinativas/metabolismo , Mamíferos/genética
5.
Cell Rep ; 43(2): 113602, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38237600

RESUMO

Recent regenerative studies using human pluripotent stem cells (hPSCs) have developed multiple kidney-lineage cells and organoids. However, to further form functional segments of the kidney, interactions of epithelial and interstitial cells are required. Here we describe a selective differentiation of renal interstitial progenitor-like cells (IPLCs) from human induced pluripotent stem cells (hiPSCs) by modifying our previous induction method for nephron progenitor cells (NPCs) and analyzing mouse embryonic interstitial progenitor cell (IPC) development. Our IPLCs combined with hiPSC-derived NPCs and nephric duct cells form nephrogenic niche- and mesangium-like structures in vitro. Furthermore, we successfully induce hiPSC-derived IPLCs to differentiate into mesangial and erythropoietin-producing cell lineages in vitro by screening differentiation-inducing factors and confirm that p38 MAPK, hypoxia, and VEGF signaling pathways are involved in the differentiation of mesangial-lineage cells. These findings indicate that our IPC-lineage induction method contributes to kidney regeneration and developmental research.


Assuntos
Eritropoetina , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Rim , Linhagem da Célula , Regeneração
6.
Nature ; 626(7998): 357-366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052228

RESUMO

Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.


Assuntos
Desenvolvimento Embrionário , Camadas Germinativas , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Implantação do Embrião , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Células-Tronco Pluripotentes/citologia , Interleucina-6/metabolismo , Gástrula/citologia , Gástrula/embriologia , Âmnio/citologia , Âmnio/embriologia , Âmnio/metabolismo , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo
7.
EMBO J ; 42(23): e113955, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850882

RESUMO

Recent studies have reported the differentiation of pluripotent cells into oocytes in vitro. However, the developmental competence of in vitro-generated oocytes remains low. Here, we perform a comprehensive comparison of mouse germ cell development in vitro over all culture steps versus in vivo with the goal to understand mechanisms underlying poor oocyte quality. We show that the in vitro differentiation of primordial germ cells to growing oocytes and subsequent follicle growth is critical for competence for preimplantation development. Systematic transcriptome analysis of single oocytes that were subjected to different culture steps identifies genes that are normally upregulated during oocyte growth to be susceptible for misregulation during in vitro oogenesis. Many misregulated genes are Polycomb targets. Deregulation of Polycomb repression is therefore a key cause and the earliest defect known in in vitro oocyte differentiation. Conversely, structurally normal in vitro-derived oocytes fail at zygotic genome activation and show abnormal acquisition of 5-hydroxymethylcytosine on maternal chromosomes. Our data identify epigenetic regulation at an early stage of oogenesis limiting developmental competence and suggest opportunities for future improvements.


Assuntos
Epigênese Genética , Oócitos , Feminino , Animais , Camundongos , Folículo Ovariano , Oogênese/genética , Células Germinativas
8.
Curr Opin Genet Dev ; 82: 102091, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37556984

RESUMO

During fetal oocyte development in mammals, germ cells progress through meiotic prophase I to form primordial follicles with pregranulosa cells. The primordial follicles remain dormant until oogenesis resumes during puberty. Studies in mice have elucidated mechanisms governing oogenesis, leading to the successful induction of functional oocytes from mouse pluripotent stem cells in vitro. Based on the in vivo/in vitro knowledge in mice and the histological and transcriptomic evidence for fetal oocyte development in humans and primates, human/primate oocyte-like cells corresponding to the early stage of oocytes in vivo have been successfully induced in vitro. Here, we discuss recent advances in our understanding of the mechanisms of fetal oocyte development in mammals, as well as in in vitro oogenesis.


Assuntos
Meiose , Células-Tronco Pluripotentes , Camundongos , Animais , Humanos , Oócitos , Oogênese/genética , Mamíferos/genética
9.
EMBO J ; 42(9): e112962, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36929479

RESUMO

Human in vitro oogenesis provides a framework for clarifying the mechanism of human oogenesis. To create its benchmark, it is vital to promote in vitro oogenesis using a model physiologically close to humans. Here, we establish a foundation for in vitro oogenesis in cynomolgus (cy) monkeys (Macaca fascicularis): cy female embryonic stem cells harboring one active and one inactive X chromosome (Xa and Xi, respectively) differentiate robustly into primordial germ cell-like cells, which in xenogeneic reconstituted ovaries develop efficiently into oogonia and, remarkably, further into meiotic oocytes at the zygotene stage. This differentiation entails comprehensive epigenetic reprogramming, including Xi reprogramming, yet Xa and Xi remain epigenetically asymmetric with, as partly observed in vivo, incomplete Xi reactivation. In humans and monkeys, the Xi epigenome in pluripotent stem cells functions as an Xi-reprogramming determinant. We further show that developmental pathway over-activations with suboptimal up-regulation of relevant meiotic genes impede in vitro meiotic progression. Cy in vitro oogenesis exhibits critical homology with the human system, including with respect to bottlenecks, providing a salient model for advancing human in vitro oogenesis.


Assuntos
Oócitos , Oogênese , Animais , Feminino , Humanos , Macaca fascicularis , Oogênese/fisiologia , Ovário , Células-Tronco Embrionárias
10.
Nature ; 615(7954): 900-906, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922585

RESUMO

Sex chromosome disorders severely compromise gametogenesis in both males and females. In oogenesis, the presence of an additional Y chromosome or the loss of an X chromosome disturbs the robust production of oocytes1-5. Here we efficiently converted the XY chromosome set to XX without an additional Y chromosome in mouse pluripotent stem (PS) cells. In addition, this chromosomal alteration successfully eradicated trisomy 16, a model of Down's syndrome, in PS cells. Artificially produced euploid XX PS cells differentiated into mature oocytes in culture with similar efficiency to native XX PS cells. Using this method, we differentiated induced pluripotent stem cells from the tail of a sexually mature male mouse into fully potent oocytes, which gave rise to offspring after fertilization. This study provides insights that could ameliorate infertility caused by sex chromosome or autosomal disorders, and opens the possibility of bipaternal reproduction.


Assuntos
Engenharia Genética , Técnicas In Vitro , Oócitos , Cromossomo X , Animais , Feminino , Masculino , Camundongos , Oócitos/metabolismo , Oócitos/fisiologia , Cromossomo X/genética , Cromossomo Y/genética , Células-Tronco Pluripotentes/metabolismo , Síndrome de Down/genética , Síndrome de Down/terapia , Fertilização , Infertilidade/terapia , Homossexualidade Masculina , Transtornos dos Cromossomos Sexuais/complicações , Transtornos dos Cromossomos Sexuais/genética , Transtornos dos Cromossomos Sexuais/terapia , Engenharia Genética/métodos
11.
Proc Natl Acad Sci U S A ; 120(4): e2213810120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669113

RESUMO

Reactivation of the inactive X chromosome is a hallmark epigenetic event during reprogramming of mouse female somatic cells to induced pluripotent stem cells (iPSCs). This involves global structural remodeling from a condensed, heterochromatic into an open, euchromatic state, thereby changing a transcriptionally inactive into an active chromosome. Despite recent advances, very little is currently known about the molecular players mediating this process and how this relates to iPSC-reprogramming in general. To gain more insight, here we perform a RNAi-based knockdown screen during iPSC-reprogramming of mouse fibroblasts. We discover factors important for X chromosome reactivation (XCR) and iPSC-reprogramming. Among those, we identify the cohesin complex member SMC1a as a key molecule with a specific function in XCR, as its knockdown greatly affects XCR without interfering with iPSC-reprogramming. Using super-resolution microscopy, we find SMC1a to be preferentially enriched on the active compared with the inactive X chromosome and that SMC1a is critical for the decompacted state of the active X. Specifically, depletion of SMC1a leads to contraction of the active X both in differentiated and in pluripotent cells, where it normally is in its most open state. In summary, we reveal cohesin as a key factor for remodeling of the X chromosome from an inactive to an active structure and that this is a critical step for XCR during iPSC-reprogramming.


Assuntos
Células-Tronco Pluripotentes Induzidas , Feminino , Animais , Camundongos , Reprogramação Celular , Inativação do Cromossomo X/genética , Cromossomo X/genética , Estruturas Cromossômicas , Coesinas
13.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210263, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36252211

RESUMO

In amniotic vertebrates (birds, reptiles and mammals), an extraembryonic structure called the chorioallantoic membrane (CAM) functions as respiratory organ for embryonic development. The CAM is derived from fusion between two pre-existing membranes, the allantois, a hindgut diverticulum and a reservoir for metabolic waste, and the chorion which marks the embryo's external boundary. Modified CAM in eutherian mammals, including humans, gives rise to chorioallantoic placenta. Despite its importance, little is known about cellular and molecular mechanisms mediating CAM formation and maturation. In this work, using the avian model, we focused on the early phase of CAM morphogenesis when the allantois and chorion meet and initiate fusion. We report here that chicken chorioallantoic fusion takes place when the allantois reaches the size of 2.5-3.0 mm in diameter and in about 6 hours between E3.75 and E4. Electron microscopy and immunofluorescence analyses suggested that before fusion, in both the allantois and chorion, an epithelial-shaped mesothelial layer is present, which dissolves after fusion, presumably by undergoing epithelial-mesenchymal transition. The fusion process per se, however, is independent of allantoic growth, circulation, or its connection to the developing mesonephros. Mesoderm cells derived from the allantois and chorion can intermingle post-fusion, and chorionic ectoderm cells exhibit a specialized sub-apical intercellular interface, possibly to facilitate infiltration of allantois-derived vascular progenitors into the chorionic ectoderm territory for optimal oxygen transport. Finally, we investigated chorioallantoic fusion-like process in primates, with limited numbers of archived human and fresh macaque samples. We summarize the similarities and differences of CAM formation among different amniote groups and propose that mesothelial epithelial-mesenchymal transition mediates chorioallantoic fusion in most amniotic vertebrates. Further study is needed to clarify tissue morphogenesis leading to chorioallantoic fusion in primates. Elucidating molecular mechanisms regulating mesothelial integrity and epithelial-mesenchymal transition will also help understand mesothelial diseases in the adult, including mesothelioma, ovarian cancer and fibrosis. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Assuntos
Alantoide , Membrana Corioalantoide , Alantoide/metabolismo , Animais , Córion/metabolismo , Epitélio , Humanos , Mamíferos , Oxigênio/metabolismo
14.
EMBO J ; 41(18): e110815, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35912849

RESUMO

In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.


Assuntos
Meiose , Oogênese , Animais , Feminino , Humanos , Macaca fascicularis , Camundongos , Oócitos , Oogênese/fisiologia , Ovário
15.
Life Sci Alliance ; 5(12)2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35944930

RESUMO

Single-cell RNA sequencing (scRNA-seq) can determine gene expression in numerous individual cells simultaneously, promoting progress in the biomedical sciences. However, scRNA-seq data are high-dimensional with substantial technical noise, including dropouts. During analysis of scRNA-seq data, such noise engenders a statistical problem known as the curse of dimensionality (COD). Based on high-dimensional statistics, we herein formulate a noise reduction method, RECODE (resolution of the curse of dimensionality), for high-dimensional data with random sampling noise. We show that RECODE consistently resolves COD in relevant scRNA-seq data with unique molecular identifiers. RECODE does not involve dimension reduction and recovers expression values for all genes, including lowly expressed genes, realizing precise delineation of cell fate transitions and identification of rare cells with all gene information. Compared with representative imputation methods, RECODE employs different principles and exhibits superior overall performance in cell-clustering, expression value recovery, and single-cell-level analysis. The RECODE algorithm is parameter-free, data-driven, deterministic, and high-speed, and its applicability can be predicted based on the variance normalization performance. We propose RECODE as a powerful strategy for preprocessing noisy high-dimensional data.


Assuntos
Análise de Dados , Análise de Célula Única , Análise por Conglomerados , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Sequenciamento do Exoma
17.
STAR Protoc ; 3(3): 101544, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842863

RESUMO

Male germ-cell development comprises primordial germ-cell (PGC) development, spermatogonium differentiation, and ensuing spermatogenesis. We present a step-by-step protocol for differentiation of mouse pluripotent stem cells (PSCs) into germline stem-cell-like cells (GSCLCs) via PGC-like cell and spermatogonium-like cell intermediates. The differentiation protocol has higher fidelity than our previous protocol. Upon transplantation into testes in vivo or culture for testis transplants, GSCLCs robustly contribute to spermatogenesis, providing a paradigm for PSC-based reconstitution of mammalian male germ-cell development. For complete details on the use and execution of this protocol, please refer to Ishikura et al. (2021).


Assuntos
Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Masculino , Mamíferos , Camundongos , Espermatogênese , Espermatogônias , Testículo
18.
EMBO J ; 41(13): e110600, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35703121

RESUMO

Germ cells are unique in engendering totipotency, yet the mechanisms underlying this capacity remain elusive. Here, we perform comprehensive and in-depth nucleome analysis of mouse germ-cell development in vitro, encompassing pluripotent precursors, primordial germ cells (PGCs) before and after epigenetic reprogramming, and spermatogonia/spermatogonial stem cells (SSCs). Although epigenetic reprogramming, including genome-wide DNA de-methylation, creates broadly open chromatin with abundant enhancer-like signatures, the augmented chromatin insulation safeguards transcriptional fidelity. These insulatory constraints are then erased en masse for spermatogonial development. Notably, despite distinguishing epigenetic programming, including global DNA re-methylation, the PGCs-to-spermatogonia/SSCs development entails further euchromatization. This accompanies substantial erasure of lamina-associated domains, generating spermatogonia/SSCs with a minimal peripheral attachment of chromatin except for pericentromeres-an architecture conserved in primates. Accordingly, faulty nucleome maturation, including persistent insulation and improper euchromatization, leads to impaired spermatogenic potential. Given that PGCs after epigenetic reprogramming serve as oogenic progenitors as well, our findings elucidate a principle for the nucleome programming that creates gametogenic progenitors in both sexes, defining a basis for nuclear totipotency.


Assuntos
Epigênese Genética , Células Germinativas , Animais , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Epigenômica , Feminino , Células Germinativas/metabolismo , Masculino , Mamíferos/genética , Camundongos , Espermatogônias
19.
EMBO J ; 41(12): e109457, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35603814

RESUMO

The mammalian germline is characterized by extensive epigenetic reprogramming during its development into functional eggs and sperm. Specifically, the epigenome requires resetting before parental marks can be established and transmitted to the next generation. In the female germline, X-chromosome inactivation and reactivation are among the most prominent epigenetic reprogramming events, yet very little is known about their kinetics and biological function. Here, we investigate X-inactivation and reactivation dynamics using a tailor-made in vitro system of primordial germ cell-like cell (PGCLC) differentiation from mouse embryonic stem cells. We find that X-inactivation in PGCLCs in vitro and in germ cell-competent epiblast cells in vivo is moderate compared to somatic cells, and frequently characterized by escaping genes. X-inactivation is followed by step-wise X-reactivation, which is mostly completed during meiotic prophase I. Furthermore, we find that PGCLCs which fail to undergo X-inactivation or reactivate too rapidly display impaired meiotic potential. Thus, our data reveal fine-tuned X-chromosome remodelling as a critical feature of female germ cell development towards meiosis and oogenesis.


Assuntos
Células Germinativas , Meiose , Animais , Diferenciação Celular , Cromossomos , Mamíferos/genética , Meiose/genética , Camundongos , Inativação do Cromossomo X/genética
20.
Sci Adv ; 8(16): eabn8485, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35442744

RESUMO

Development of the adrenal cortex, a vital endocrine organ, originates in the adrenogonadal primordium, a common progenitor for both the adrenocortical and gonadal lineages in rodents. In contrast, we find that in humans and cynomolgus monkeys, the adrenocortical lineage originates in a temporally and spatially distinct fashion from the gonadal lineage, arising earlier and more anteriorly within the coelomic epithelium. The adrenal primordium arises from adrenogenic coelomic epithelium via an epithelial-to-mesenchymal transition, which then progresses into the steroidogenic fetal zone via both direct and indirect routes. Notably, we find that adrenocortical and gonadal lineages exhibit distinct HOX codes, suggesting distinct anterior-posterior regionalization. Together, our assessment of the early divergence of these lineages provides a molecular framework for understanding human adrenal and gonadal disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA