Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Dev Dyn ; 249(1): 34-45, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30843293

RESUMO

The kidney is one of the most complex organs composed of multiple cell types, functioning to maintain homeostasis by means of the filtering of metabolic wastes, balancing of blood electrolytes, and adjustment of blood pressure. Recent advances in 3D culture technologies in vitro enabled the generation of "organoids" which mimic the structure and function of in vivo organs. Organoid technology has allowed for new insights into human organ development and human pathophysiology, with great potential for translational research. Increasing evidence shows that kidney organoids are a useful platform for disease modeling of genetic kidney diseases when derived from genetic patient iPSCs and/or CRISPR-mutated stem cells. Although single cell RNA-seq studies highlight the technical difficulties underlying kidney organoid generation reproducibility and variation in differentiation protocols, kidney organoids still hold great potential to understand kidney pathophysiology as applied to kidney injury and fibrosis. In this review, we summarize various studies of kidney organoids, disease modeling, genome-editing, and bioengineering, and additionally discuss the potential of and current challenges to kidney organoid research.


Assuntos
Células-Tronco Pluripotentes/citologia , Medicina Regenerativa/métodos , Pesquisa Translacional Biomédica/métodos , Animais , Humanos , Rim/citologia , Organoides/citologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA