Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
bioRxiv ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39464103

RESUMO

Anti-HIV envelope broadly neutralizing antibodies (bnAbs) are alternatives to conventional antiretrovirals with the potential to prevent and treat infection, reduce latent reservoirs, and/or mediate a functional cure. Clinical trials with "first generation" bnAbs used alone or in combination show promising antiviral effects but also highlight that additional engineering of "enhanced" antibodies will be required for optimal clinical utility, while preserving or enhancing cGMP manufacturing capability. Here we report the engineering of an anti-CD4 binding-site (CD4bs) bnAb, N49P9.3, purified from the plasma of an HIV elite-neutralizer. Through a series of rational modifications we produced a variant that demonstrates: enhanced potency; superior antiviral activity in combination with other bnAbs; low polyreactivity; and longer circulating half-life. Additional engineering for manufacturing produced a final variant, eN49P9, with properties conducive to cGMP production. Overall, these efforts demonstrate the feasibility of developing enhanced anti-CD4bs bnAbs with greatly improved antiviral properties as well as potential translational value.

2.
Sci Rep ; 14(1): 21031, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251674

RESUMO

This retrospective cohort study conducted in Turkey between December 2020 and June 2022 aimed to assess antibiotic use, bacterial co-infections, and the associated factors on mortality in hospitalized patients with mild-to-severe COVID-19. Among the 445 patients, 80% received antibiotics, with fluoroquinolones being the most common choice, followed by beta-lactams and combinations. Various clinical and laboratory parameters, including symptoms, comorbidities, CCI, oxygen requirements, and CRP levels were observed to be elevated in the antibiotic group. Non-survivors had more ICU admissions and longer hospital stays compared to survivors. We conducted a multivariate Cox regression analysis to evaluate factors related to mortality. However, we did not find an association between antibiotic use and mortality [HR 2.7 (95% CI 0.4-20)]. The study identified significant factors associated with an antibiotic prescription, such as CCI (OR 1.6), CRP (OR 2.3), and ICU admission (OR 8.8), (p < 0.05). The findings suggest re-evaluating the necessity of antibiotics in COVID-19 cases based on clinical assessments, focusing on the presence of bacterial infections rather than empirical treatment. Further research is necessary to more accurately identify patients with bacterial co-infections who would benefit from antibiotic treatment.


Assuntos
Antibacterianos , Tratamento Farmacológico da COVID-19 , COVID-19 , Humanos , Turquia/epidemiologia , Masculino , Antibacterianos/uso terapêutico , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , COVID-19/mortalidade , COVID-19/epidemiologia , Coinfecção/tratamento farmacológico , SARS-CoV-2/isolamento & purificação , Adulto , Infecções Bacterianas/tratamento farmacológico , Resultado do Tratamento , Unidades de Terapia Intensiva/estatística & dados numéricos
3.
Math Biosci ; 376: 109274, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218212

RESUMO

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in transient antibody response against the spike protein. The individual immune status at the time of vaccination influences the response. Using mathematical models of antibody decay, we determined the dynamics of serum immunoglobulin G (IgG) and serum immunoglobulin A (IgA) over time. Data fitting to longitudinal IgG and IgA titers was used to quantify differences in antibody magnitude and antibody duration among infection-naïve and infection-positive vaccinees. We found that prior infections result in more durable serum IgG and serum IgA responses, with prior symptomatic infections resulting in the most durable serum IgG response and prior asymptomatic infections resulting in the most durable serum IgA response. These findings can guide vaccine boosting schedules.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunoglobulina A , Imunoglobulina G , SARS-CoV-2 , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinação , Glicoproteína da Espícula de Coronavírus/imunologia , Modelos Imunológicos
4.
J Infect Dis ; 230(1): e30-e33, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052732

RESUMO

Generation of a stable long-lived plasma cell (LLPC) population is the sine qua non of durable antibody responses after vaccination or infection. We studied 20 individuals with a prior coronavirus disease 2019 infection and characterized the antibody response using bone marrow aspiration and plasma samples. We noted deficient generation of spike-specific LLPCs in the bone marrow after severe acute respiratory syndrome coronavirus 2 infection. Furthermore, while the regression model explained 98% of the observed variance in anti-tetanus immunoglobulin G levels based on LLPC enzyme-linked immunospot assay, we were unable to fit the same model with anti-spike antibodies, again pointing to the lack of LLPC contribution to circulating anti-spike antibodies.


Assuntos
Anticorpos Antivirais , Medula Óssea , COVID-19 , Plasmócitos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/imunologia , Plasmócitos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Antivirais/sangue , SARS-CoV-2/imunologia , Masculino , Pessoa de Meia-Idade , Feminino , Medula Óssea/virologia , Adulto , Imunoglobulina G/sangue , Idoso
5.
Viruses ; 16(3)2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38543772

RESUMO

Efforts to develop vaccine and immunotherapeutic countermeasures against the COVID-19 pandemic focus on targeting the trimeric spike (S) proteins of SARS-CoV-2. Vaccines and therapeutic design strategies must impart the characteristics of virion S from historical and emerging variants onto practical constructs such as soluble, stabilized trimers. The virus spike is a heterotrimer of two subunits: S1, which includes the receptor binding domain (RBD) that binds the cell surface receptor ACE2, and S2, which mediates membrane fusion. Previous studies suggest that the antigenic, structural, and functional characteristics of virion S may differ from current soluble surrogates. For example, it was reported that certain anti-glycan, HIV-1 neutralizing monoclonal antibodies bind soluble SARS-CoV-2 S but do not neutralize SARS-CoV-2 virions. In this study, we used single-molecule fluorescence correlation spectroscopy (FCS) under physiologically relevant conditions to examine the reactivity of broadly neutralizing and non-neutralizing anti-S human monoclonal antibodies (mAbs) isolated in 2020. Binding efficiency was assessed by FCS with soluble S trimers, pseudoviruses and inactivated wild-type virions representing variants emerging from 2020 to date. Anti-glycan mAbs were tested and compared. We find that both anti-S specific and anti-glycan mAbs exhibit variable but efficient binding to a range of stabilized, soluble trimers. Across mAbs, the efficiencies of soluble S binding were positively correlated with reactivity against inactivated virions but not pseudoviruses. Binding efficiencies with pseudoviruses were generally lower than with soluble S or inactivated virions. Among neutralizing mAbs, potency did not correlate with binding efficiencies on any target. No neutralizing activity was detected with anti-glycan antibodies. Notably, the virion S released from membranes by detergent treatment gained more efficient reactivity with anti-glycan, HIV-neutralizing antibodies but lost reactivity with all anti-S mAbs. Collectively, the FCS binding data suggest that virion surfaces present appreciable amounts of both functional and nonfunctional trimers, with neutralizing anti-S favoring the former structures and non-neutralizing anti-glycan mAbs binding the latter. S released from solubilized virions represents a nonfunctional structure bound by anti-glycan mAbs, while engineered soluble trimers present a composite structure that is broadly reactive with both mAb types. The detection of disparate antigenicity and immunoreactivity profiles in engineered and virion-associated S highlight the value of single-virus analyses in designing future antiviral strategies against SARS-CoV-2.


Assuntos
COVID-19 , HIV-1 , Humanos , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Pandemias , Anticorpos Neutralizantes , Anticorpos Anti-HIV/análise , Anticorpos Monoclonais , Vírion/metabolismo , Anticorpos Antivirais/química
6.
Commun Med (Lond) ; 4(1): 52, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504093

RESUMO

BACKGROUND: Among people living with HIV, elite controllers (ECs) maintain an undetectable viral load, even without receiving anti-HIV therapy. In non-EC patients, this therapy leads to marked improvement, including in immune parameters, but unlike ECs, non-EC patients still require ongoing treatment and experience co-morbidities. In-depth, comprehensive immune analyses comparing EC and treated non-EC patients may reveal subtle, consistent differences. This comparison could clarify whether elevated circulating interferon-alpha (IFNα) promotes widespread immune cell alterations and persists post-therapy, furthering understanding of why non-EC patients continue to need treatment. METHODS: Levels of IFNα in HIV-infected EC and treated non-EC patients were compared, along with blood immune cell subset distribution and phenotype, and functional capacities in some cases. In addition, we assessed mechanisms potentially associated with IFNα overload. RESULTS: Treatment of non-EC patients results in restoration of IFNα control, followed by marked improvement in distribution numbers, phenotypic profiles of blood immune cells, and functional capacity. These changes still do not lead to EC status, however, and IFNα can induce these changes in normal immune cell counterparts in vitro. Hypothesizing that persistent alterations could arise from inalterable effects of IFNα at infection onset, we verified an IFNα-related mechanism. The protein induces the HIV coreceptor CCR5, boosting HIV infection and reducing the effects of anti-HIV therapies. EC patients may avoid elevated IFNα following on infection with a lower inoculum of HIV or because of some unidentified genetic factor. CONCLUSIONS: Early control of IFNα is essential for better prognosis of HIV-infected patients.


The treatment for HIV, known as antiretroviral therapy (ART), does not cure HIV but enables individuals to live longer, healthier lives. In this study, we compared immune responses between elite controllers (ECs), who control their HIV infection without any treatment, and ART-treated and untreated patients. We demonstrate that IFNα, a small protein crucial in controlling immune system, is excessively produced at the onset of HIV infection and at levels that persist, resulting in poor HIV control without therapy. We show a mechanism for lack of control of HIV by IFNα. While inhibiting HIV, IFNα also simultaneously increases the HIV co-receptor, CCR5, thereby facilitating virus entry into the target cell. This is avoided by ECs which we hypothesize is associated with a lower infectious inoculum of HIV.

7.
Commun Med (Lond) ; 4(1): 53, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504106

RESUMO

BACKGROUND: A complete understanding of the different steps of HIV replication and an effective drug combination have led to modern antiretroviral regimens that block HIV replication for decades, but these therapies are not curative and must be taken for life. "Elite controllers" (ECs) is a term for the 0.5% of HIV-infected persons requiring no antiretroviral therapy, whose status may point the way toward a functional HIV cure. Defining the mechanisms of this control may be key to understanding how to replicate this functional cure in others. METHODS: In ECs and untreated non-EC patients, we compared IFNα serum concentration, distribution of immune cell subsets, and frequency of cell markers associated with immune dysfunction. We also investigated the effect of an elevated dose of IFNα on distinct subsets within dendritic cells, natural killer cells, and CD4+ and CD8 + T cells. RESULTS: Serum IFNα was undetectable in ECs, but all immune cell subsets from untreated non-EC patients were structurally and functionally impaired. We also show that the altered phenotype and function of these cell subsets in non-EC patients can be recapitulated when cells are stimulated in vitro with high-dose IFNα. CONCLUSIONS: Elevated IFNα is a key mediator of HIV pathogenesis.


Currently, HIV infection is not curable, but infected individuals can manage their condition by taking daily doses of antiretroviral therapy. Some individuals, known as elite controllers (ECs), control their infection without antiretroviral treatment, and studying how their immune system responds to HIV exposure could lead to a potential cure for others. Here, we compare immune cell responses between ECs and untreated non-ECs. We find that IFNα, a small protein with an important role in controlling white blood cell activity, is produced in excess in immune cells from non-ECs compared with ECs during early infection. This insight provides an important clue for the future development of a targeted cure for HIV.

8.
Int J Biol Macromol ; 257(Pt 1): 128362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029898

RESUMO

N-glycosylation at the antibody variable domain has emerged as an important modification influencing antibody function. Despite its significance, information regarding its role and regulation remains limited. To address this gap, we comprehensively explored antibody structures housing N-glycosylation within the Protein Data Bank, yielding fresh insights into this intricate landscape. Our findings revealed that among 208 structures, N-glycosylation was more prevalent in human and mouse antibodies containing IGHV1-8 and IGHV2-2 germline genes, respectively. Moreover, our research highlights the potential for somatic hypermutation to introduce N-glycosylation sites by substituting polar residues (Ser or Thr) in germline variable genes with asparagine. Notably, our study underscores the prevalence of N-glycosylation in antiviral antibodies, especially anti-HIV. Besides antigen-antibody interaction, our findings suggest that N-glycosylation may impact antibody specificity, affinity, and avidity by influencing Fab dimer formation and complementary-determining region orientation. We also identified different glycan structures in HIV and SARS-CoV-2 antibody proteomic datasets, highlighting disparities from the N-glycan structures between PDB antibodies and biological repertoires further highlighting the complexity of N-glycosylation patterns. Our findings significantly enrich our understanding of the N-glycosylation's multifaceted characteristics within the antibody variable domain. Additionally, they underscore the pressing imperative for a more comprehensive characterization of its impact on antibody function.


Assuntos
Anticorpos Antivirais , Proteômica , Humanos , Camundongos , Animais , Glicosilação , Anticorpos Antivirais/metabolismo , Polissacarídeos/metabolismo
9.
Nat Commun ; 14(1): 7062, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923717

RESUMO

Passively administered monoclonal antibodies (mAbs) given before or after viral infection can prevent or blunt disease. Here, we examine the efficacy of aerosol mAb delivery to prevent infection and disease in rhesus macaques inoculated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant via intranasal and intratracheal routes. SARS-CoV-2 human mAbs or a human mAb directed to respiratory syncytial virus (RSV) are nebulized and delivered using positive airflow via facemask to sedated macaques pre- and post-infection. Nebulized human mAbs are detectable in nasal, oropharyngeal, and bronchoalveolar lavage (BAL) samples. SARS-CoV-2 mAb treatment significantly reduces levels of SARS-CoV-2 viral RNA and infectious virus in the upper and lower respiratory tracts relative to controls. Reductions in lung and BAL virus levels correspond to reduced BAL inflammatory cytokines and lung pathology. Aerosolized antibody therapy for SARS-CoV-2 could be effective for reducing viral burden and limiting disease severity.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Macaca mulatta , COVID-19/patologia , Aerossóis e Gotículas Respiratórios , Pulmão/patologia , Anticorpos Antivirais , Replicação Viral , Anticorpos Monoclonais
10.
MAbs ; 15(1): 2231128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405954

RESUMO

Antibody-mediated effector functions are widely considered to unfold according to an associative model of IgG-Fcγ receptor (FcγR) interactions. The associative model presupposes that Fc receptors cannot discriminate antigen-bound IgG from free IgG in solution and have equivalent affinities for each. Therefore, the clustering of Fcγ receptors (FcγR) in the cell membrane, cross-activation of intracellular signaling domains, and the formation of the immune synapse are all the result of avid interactions between the Fc region of IgG and FcγRs that collectively overcome the individually weak, transient interactions between binding partners. Antibody allostery, specifically conformational allostery, is a competing model in which antigen-bound antibody molecules undergo a physical rearrangement that causes them to stand out from the background of free IgG by virtue of greater FcγR affinity. Various evidence exists in support of this model of antibody allostery, but it remains controversial. We report observations from multiplexed, label-free kinetic experiments in which the affinity values of FcγR were characterized for covalently immobilized, captured, and antigen-bound IgG. Across the strategies tested, receptors had greater affinity for the antigen-bound mode of IgG presentation. This phenomenon was observed across multiple FcγRs and generalized to multiple antigens, antibody specificities, and subclasses. Furthermore, the thermodynamic signatures of FcγR binding to free or immune-complexed IgG in solution differed when measured by an orthogonal label-free method, but the failure to recapitulate the trend in overall affinity leaves open questions as to what additional factors may be at play.


Assuntos
Imunoglobulina G , Receptores de IgG , Humanos , Imunoglobulina G/química , Ligação Proteica , Fragmentos Fc das Imunoglobulinas/química , Membrana Celular/metabolismo
11.
Front Immunol ; 14: 1178355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334379

RESUMO

SARS-CoV-2, the virus behind the COVID-19 pandemic, has changed over time to the extent that the current virus is substantially different from what originally led to the pandemic in 2019-2020. Viral variants have modified the severity and transmissibility of the disease and continue do so. How much of this change is due to viral fitness versus a response to immune pressure is hard to define. One class of antibodies that continues to afford some level of protection from emerging variants are those that closely overlap the binding site for angiotensin-converting enzyme 2 (ACE2) on the receptor binding domain (RBD). Some members of this class that were identified early in the course of the pandemic arose from the VH 3-53 germline gene (IGHV3-53*01) and had short heavy chain complementarity-determining region 3s (CDR H3s). Here, we describe the molecular basis of the SARS-CoV-2 RBD recognition by the anti-RBD monoclonal antibody CoV11 isolated early in the COVID-19 pandemic and show how its unique mode of binding the RBD determines its neutralization breadth. CoV11 utilizes a heavy chain VH 3-53 and a light chain VK 3-20 germline sequence to bind to the RBD. Two of CoV11's four heavy chain changes from the VH 3-53 germline sequence, ThrFWR H128 to Ile and SerCDR H131 to Arg, and some unique features in its CDR H3 increase its affinity to the RBD, while the four light chain changes from the VK 3-20 germline sequence sit outside of the RBD binding site. Antibodies of this type can retain significant affinity and neutralization potency against variants of concern (VOCs) that have diverged significantly from original virus lineage such as the prevalent omicron variant. We also discuss the mechanism by which VH 3-53 encoded antibodies recognize spike antigen and show how minimal changes to their sequence, their choice of light chain, and their mode of binding influence their affinity and impact their neutralization breadth.


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Família Multigênica , Anticorpos
12.
Res Sq ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214795

RESUMO

Like EC, we find that ART-treated patients control serum IFNα concentration and show few immune cell alterations enabling a healthy but fragile medical status. However, treatment interruption leads to elevated IFNα reflecting virus production indicating that like EC, ART does not achieve a virological cure. The immune system becomes overwhelmed by multiple immune cell abnormalities as found in untreated patients. These are chiefly mediated by elevated IFNα inducing signaling checkpoints abnormalities, including PD1, in cytotoxic immune cells. Importantly, during acute infection, elevated IFNα correlated with HIV load and we found that IFNα enhances CCR5, the HIV coreceptor in CD4+ T-cells, impairing its anti-viral response and accounting for the pathogenic vicious cycle: HIV → IFNα ↗ → infected CD4+ T-cells ↗ →HIV ↗. This study opens immunotherapeutic perspectives showing the need to control IFNα in order to convert ART patients into EC.

13.
Res Sq ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37215045

RESUMO

Advances in HIV therapy came from understanding its replication. Further progress toward "functional cure" -no therapy needed as found in Elite Controllers (EC)- may come from insights in pathogenesis and avoidance by EC. Here we show that all immune cells from HIV-infected persons are impaired in non-EC, but not in EC. Since HIV infects few cell types, these results suggest an additional mediator of pathogenesis. We identify that mediator as elevated pathogenic IFNα, controlled by EC likely by their preserved potent NK-cells and later by other killer cells. Since the earliest days of infection predict outcome genetic or chance events must be key to EC, and since we found no unique immune parameter at the onset, we suggest a chance infection with a lower HIV inoculum. These results offer an additional approach toward functional cure: a judicious targeting of IFNα for all non-EC patients.

14.
AIDS Res Hum Retroviruses ; 39(9): 475-481, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37053110

RESUMO

Non-small cell lung cancer (NSCLC) is the most fatal non-AIDS defining cancer in people living with HIV (PWH) on antiretroviral therapy (ART). Treatment of malignancies in PWH requires concomitant cancer therapy and ART, which can lead to potential drug-drug interactions (DDIs) and overlapping toxicities. In this study, we hypothesize that replacement of ART with HIV broadly neutralizing antibodies (bNAbs) during cancer chemotherapy (chemo) may maintain HIV suppression and tumor inhibition while minimizing DDIs and overlapping toxicities. We compared HIV suppression, tumor inhibition, and toxicity between conventional treatment (ART plus chemo) and a new modality (bNAbs plus chemo) in humanized mice. Humanized mice infected with HIVYU2 and xenografted with human NSCLC A549 cells were treated with NSCLC chemo (cisplatin and gemcitabine) and first-line ART (dolutegravir, tenofovir disoproxil difumarate, and emtricitabine) or bNAbs (N49P9.6-FR and PGT 121) at human equivalent drug doses. We monitored plasma HIV RNA, tumor volume, and toxicities over five cycles of chemo. We found that chemo plus ART or bNAbs were equally effective at maintaining suppression of HIV viremia and tumor growth. Comparative analysis showed that mice on ART and chemo had significant reductions in body weight and significant increases in plasma creatinine concentrations compared with mice on bNAbs and chemo, which suggests that a combination of bNAbs and chemo produces less renal toxicity than an ART and chemo combination. These data suggest that bNAb therapy during concomitant chemo may be an improved treatment option over ART for PWH and NSCLC, and possibly other cancers, because bNAbs maintain HIV suppression while minimizing DDIs and toxicities.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Infecções por HIV , HIV-1 , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Infecções por HIV/tratamento farmacológico , Anticorpos Amplamente Neutralizantes/farmacologia , Anticorpos Amplamente Neutralizantes/uso terapêutico , Anticorpos Anti-HIV , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Anticorpos Neutralizantes , Neoplasias Pulmonares/tratamento farmacológico , HIV-1/genética
15.
PLoS One ; 18(4): e0284020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023025

RESUMO

BACKGROUND: Although there have been many studies on antibody responses to SARS-CoV-2 in breast milk, very few have looked at the fate of these in the infant, and whether they are delivered to immunologically relevant sites in infants. METHODS: Mother/infant pairs (mothers who breast milk fed and who were SARS-CoV-2 vaccinated before or after delivery) were recruited for this cross-sectional study. Mother blood, mother breast milk, infant blood, infant nasal specimen, and infant stool was tested for IgA and IgG antibodies against SARS-CoV-2 spike trimer. RESULTS: Thirty-one mother/infant pairs were recruited. Breast milk fed infants acquired systemic anti-spike IgG antibodies only if their mothers were vaccinated antepartum (100% Antepartum; 0% Postpartum; P<0.0001). Breast milk fed infants acquired mucosal anti-spike IgG antibodies (in the nose) only if their mothers were vaccinated antepartum (89% Antepartum; 0% Postpartum; P<0.0001). None of the infants in either group had anti-spike IgA in the blood. Surprisingly, 33% of the infants whose mothers were vaccinated antepartum had high titer anti-spike IgA in the nose (33% Antepartum; 0% Postpartum; P = 0.03). Half-life of maternally transferred plasma IgG antibodies in the Antepartum infant cohort was ~70 days. CONCLUSION: Vaccination antepartum followed by breast milk feeding appears to be the best way to provide systemic and local anti-SARS-CoV-2 antibodies for infants. The presence of high titer SARS-CoV-2-specific IgA in the nose of infants points to the potential importance of breast milk feeding early in life for maternal transfer of mucosal IgA antibodies. Expectant mothers should consider becoming vaccinated antepartum and consider breast milk feeding for optimal transfer of systemic and mucosal antibodies to their infants.


Assuntos
COVID-19 , Leite Humano , Lactente , Feminino , Humanos , Estudos Transversais , COVID-19/prevenção & controle , SARS-CoV-2 , Aleitamento Materno , Anticorpos Antivirais , Imunoglobulina A , Imunoglobulina G
16.
Am J Med Sci ; 365(5): 409-412, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608846

RESUMO

Abu-'Ali al-Husayn ibn Abdallah ibn-Sina (known in the West as Avicenna) is revered in much of Asia as one of history's greatest physicians. And yet, few westerners know of him, his iconic Canon of Medicine or the role he played in preserving ancient Greek medical knowledge following the sack of Rome. We briefly review Avicenna's impressive legacy and provide what to our knowledge is the first critical examination of the illness responsible for his death at age 58 years.


Assuntos
Cólica , Medicina Arábica , Medicina , Médicos , Humanos , Masculino , História Medieval , Pessoa de Meia-Idade , Ásia
17.
Nat Commun ; 13(1): 7298, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435827

RESUMO

Crimean-Congo Hemorrhagic Fever Virus (CCHFV) causes a life-threatening disease with up to a 40% mortality rate. With no approved medical countermeasures, CCHFV is considered a public health priority agent. The non-neutralizing mouse monoclonal antibody (mAb) 13G8 targets CCHFV glycoprotein GP38 and protects mice from lethal CCHFV challenge when administered prophylactically or therapeutically. Here, we reveal the structures of GP38 bound with a human chimeric 13G8 mAb and a newly isolated CC5-17 mAb from a human survivor. These mAbs bind overlapping epitopes with a shifted angle. The broad-spectrum potential of c13G8 and CC5-17 and the practicality of using them against Aigai virus, a closely related nairovirus were examined. Binding studies demonstrate that the presence of non-conserved amino acids in Aigai virus corresponding region prevent CCHFV mAbs from binding Aigai virus GP38. This information, coupled with in vivo efficacy, paves the way for future mAb therapeutics effective against a wide swath of CCHFV strains.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Camundongos , Humanos , Animais , Vírus da Febre Hemorrágica da Crimeia-Congo/química , Febre Hemorrágica da Crimeia/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Anticorpos Monoclonais
18.
mSphere ; 7(6): e0027922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36321826

RESUMO

With much of the world infected with or vaccinated against severe acute respiratory syndrome coronavirus 2 (commonly abbreviated SARS-CoV-2; abbreviated here SARS2), understanding the immune responses to the SARS2 spike (S) protein in different situations is crucial to controlling the pandemic. We studied the clinical, systemic, mucosal, and cellular responses to two doses of SARS2 mRNA vaccines in 62 individuals with and without prior SARS2 infection that were divided into three groups based on antibody serostatus prior to vaccination and/or degree of disease symptoms among those with prior SARS2 infection: antibody negative (naive), low symptomatic, and symptomatic. Antibody negative were subjects who were antibody negative (i.e., those with no prior infection). Low symptomatic subjects were those who were antibody negative and had minimal or no symptoms at time of SARS2 infection. Symptomatic subjects were those who were antibody positive and symptomatic at time of SARS2 infection. All three groups were then studied when they received their SARS2 mRNA vaccines. In the previously SARS2-infected (based on antibody test) low symptomatic and symptomatic groups, reactogenic symptoms related to a recall response were elicited after the first vaccination. Anti-S trimer IgA and IgG titers, and neutralizing antibody titers, peaked after the 1st vaccination in the previously SARS2-infected groups and were significantly higher than for the SARS2 antibody-negative group in the plasma and nasal samples at most time points. Nasal and plasma IgA antibody responses were significantly higher in the low symptomatic group than in the symptomatic group at most time points. After the first vaccination, differences in cellular immunity were not evident between groups, but the activation-induced cell marker (AIM+) CD4+ cell response correlated with durability of IgG humoral immunity against the SARS2 S protein. In those SARS2-infected subjects, severity of infection dictated plasma and nasal IgA responses in primary infection as well as response to vaccination (peak responses and durability), which could have implications for continued protection against reinfection. Lingering differences between the SARS2-infected and SARS2-naive up to 10 months postvaccination could explain the decreased reinfection rates in the SARS2-infected vaccinees recently reported and suggests that additional strategies (such as boosting of the SARS2-naive vaccinees) are needed to narrow the differences observed between these groups. IMPORTANCE This study on SARS2 vaccination in those with and without previous exposure to the virus demonstrates that severity of infection dictates IgA responses in primary infection as well as response to vaccination (peak responses and durability), which could have implications for continued protection against reinfection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Reinfecção , Vacinação , Anticorpos Antivirais , Vacinas contra COVID-19 , Imunoglobulina A , Imunoglobulina G
19.
Biochem Med (Zagreb) ; 32(2): 020705, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35799990

RESUMO

Introduction: Coronavirus disease 2019 (COVID-19) is known to induce robust antibody response in most of the affected individuals. The objective of the study was to determine if we can harvest the test sensitivity and specificity of a commercial serologic immunoassay merely based on the frequency distribution of the SARS-CoV-2 immunoglobulin (Ig) G concentrations measured in a population-based seroprevalence study. Materials and methods: The current study was conducted on a subset of a previously published dataset from the canton of Geneva. Data were taken from two non-consecutive weeks (774 samples from May 4-9, and 658 from June 1-6, 2020). Assuming that the frequency distribution of the measured SARS-CoV-2 IgG is binormal (an educated guess), using a non-linear regression, we decomposed the distribution into its two Gaussian components. Based on the obtained regression coefficients, we calculated the prevalence of SARS-CoV-2 infection, the sensitivity and specificity, and the most appropriate cut-off value for the test. The obtained results were compared with those obtained from a validity study and a seroprevalence population-based study. Results: The model could predict more than 90% of the variance observed in the SARS-CoV-2 IgG distribution. The results derived from our model were in good agreement with the results obtained from the seroprevalence and validity studies. Altogether 138 of 1432 people had SARS-CoV-2 IgG ≥ 0.90, the cut-off value which maximized the Youden's index. This translates into a true prevalence of 7.0% (95% confidence interval 5.4% to 8.6%), which is in keeping with the estimated prevalence of 7.7% derived from our model. Our model can provide the true prevalence. Conclusions: Having an educated guess about the distribution of test results, the test performance indices can be derived with acceptable accuracy merely based on the test results frequency distribution without the need for conducting a validity study and comparing the test results against a gold-standard test.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Imunoensaio/métodos , Imunoglobulina G , Sensibilidade e Especificidade , Estudos Soroepidemiológicos
20.
PLoS One ; 17(3): e0265562, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298546

RESUMO

BACKGROUND: Several live attenuated vaccines were shown to provide temporary protection against a variety of infectious diseases through stimulation of the host innate immune system. OBJECTIVE: To test the hypothesis that countries using oral polio vaccine (OPV) have a lower cumulative number of cases diagnosed with COVID-19 per 100,000 population (CP100K) compared with those using only inactivated polio vaccine (IPV). METHODS: In an ecological study, the CP100K was compared between countries using OPV vs IPV. We used a random-effect meta-analysis technique to estimate the pooled mean for CP100K. We also used negative binomial regression with CP100K as the dependent variable and the human development index (HDI) and the type of vaccine used as independent variables. RESULTS: The pooled estimated mean CP100K was 4970 (95% CI 4030 to 5900) cases per 100,000 population for countries using IPV, significantly (p<0.001) higher than that for countries using OPV-1580 (1190 to 1960). Countries with higher HDI prefer to use IPV; those with lower HDI commonly use OPV. Both HDI and the type of vaccine were independent predictors of CP100K. Use of OPV compared to IPV could independently decrease the CP100K by an average of 30% at the mean HDI of 0.72. CONCLUSIONS: Countries using OPV have a lower incidence of COVID-19 compared to those using IPV. This might suggest that OPV may either prevent SARS-CoV-2 infection at individual level or slow down the transmission at the community level.


Assuntos
COVID-19/epidemiologia , Saúde Global/estatística & dados numéricos , Vacina Antipólio Oral/uso terapêutico , COVID-19/prevenção & controle , Humanos , Incidência , Vacina Antipólio de Vírus Inativado/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA