RESUMO
In this study, rapid expansion of a supercritical solution into a Liquid Solvent (RESOLV) was used for the first time to produce pharmaceutical nanoparticles of Prazosin hydrochloride (PRH). The Taguchi method (robust design) was utilized to design the experiments and ensure obtaining the optimal process conditions. The pressure (15-25 MPa), temperature (308-328 K) and nozzle diameter (300-700 µm) effects on the morphology and size distribution of the resulting particles were also examined. The size of the particles decreased from about 40 µm to the range of (252-418 nm). FTIR, DLS, FESEM, XRD, DSC were used to characterize the primary and processed PRH particles. According to DSC investigations, RESOLV-produced PRH showed lower crystallinity than original PRH.
RESUMO
The size of the drug particles is one of the essential factors for the proper absorption of the drug compared to the dose of the drug. When particle size is decreased, drug uptake into the body increases. Recent studies have revealed that the rapid expansion of supercritical solution with cosolvent plays a significant role in preparing micron and submicron particles. This paper examines the preparation of Erlotinib hydrochloride nanoparticles using a supercritical solution through the cosolvent method for the first time. An examination of the parameters of temperature (318-338 K), pressures (15-25 MPa) and nozzle diameter (300-700 µm) was investigated by Box-Behnken design, and their respective effects on particle size revealed that the nozzle diameter has a more significant impact on particle size than the other parameters. The smallest particles were produced at temperature 338 K, pressure 20 MPa, and nozzle diameter 700 µm. Besides, the ERL nanoparticles were characterized using SEM, DLS, XRD, FTIR, and DSC analyses. Finally, the results showed that the average size of the ERL particles decreased from 31.6 µm to 200-1100 nm.
Assuntos
Antineoplásicos , Cloridrato de Erlotinib , Nanopartículas , Tamanho da Partícula , Cloridrato de Erlotinib/química , Nanopartículas/química , Antineoplásicos/química , Temperatura , Cromatografia com Fluido Supercrítico/métodos , Composição de Medicamentos/métodos , PressãoRESUMO
Supercritical carbon dioxide (SC-CO2)-based approaches have become more popular in recent years as alternative methods for creating micro- or nanosized medicines. Particularly, high drug solubility is required in those techniques using SC-CO2 as a solvent. During the most recent pandemic years, favipiravir and montelukast were two of the most often prescribed medications for the treatment of COVID-19. In this study, ethanol at 1 and 3 mol% was utilized as a cosolvent to increase the solubility of both medicines in SC-CO2 by a static approach using a range of temperatures (308 to 338 K) and pressure (12 to 30 MPa) values. The experimentally determined solubilities of favipiravir and montelukast in SC-CO2 + 3 mol% ethanol showed solubility values up to 33.3 and 24.5 times higher than that obtained for these drugs with only SC-CO2. The highest values were achieved in the pressure of 12 MPa and temperature of 338 K. Last but not least, six density-based semi-empirical models with various adjustable parameters were used to perform the modeling of the solubility of favipiravir and montelukast.
RESUMO
The solubility of an anti-hyperglycemic agent drug, (R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro [1,2,4] triazolo[4,3-a] pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl) butan-2-amine (also known as Sitagliptin phosphate) in supercritical carbon dioxide (scCO2) was determined by ananalytical and dynamic technique at different temperatures (308, 318, 328 and 338 K) and pressure (12-30 MPa) values. The measured solubilities were in the range of 3.02 × 10-5 to 5.17 × 10-5, 2.71 × 10-5 to 5.83 × 10-5, 2.39 × 10-5 to 6.51 × 10-5 and 2.07 × 10-5 to 6.98 × 10-5 in mole fraction at (308, 318, 328 and 338) K, respectively. The solubility data were correlated with existing density models and with a new association model.
RESUMO
A static method is employed to determine the solubilities of verapamil in supercritical carbon dioxide (SC-CO2) at temperatures between 308 and 338 K and pressures between 12 and 30 MPa. The solubility of verapamil in SC-CO2 expressed as mole fraction are in the range of 3.6 × 10-6 to 7.14 × 10-5. Using four semi-empirical density-based models, the solubility data are correlated: Chrastil, Bartle, Kumar-Johnston (K-J), and Mendez-Santiago and Teja (MST), two equations of state (SRK and PC-SAFT EoS), expanded liquid models (modified Wilson's models), and regular solution model. The obtained results indicated that the regular solution and PC-SAFT models showed the most noteworthy exactness with AARD% of 1.68 and 7.45, respectively. The total heat, vaporization heat, and solvation heat of verapamil are calculated at 39.62, 60.03, and - 20.41 kJ/mol, respectively. Regarding the poor solubility of verapamil in SC-CO2, supercritical anti-solvent methods can be an appropriate choice to produce fine particles of this drug.
RESUMO
The solubility of compounds in supercritical carbon dioxide (SC-[Formula: see text]) has found crucial significance in the fabrication of micro/nano-scaled drugs. In this research, the solubility of Aripiprazole was measured in SC-[Formula: see text] at various temperatures (308-338 K) and pressures (12-30 MPa). Moreover, the experimental solubility results were correlated with several semi-empirical models (Chrastil, Bartle et al., Kumar & Johnston, Menden-Santiago & Teja, Sodeifian et al., and Jouyban et al.) as well as the modified Wilson model. The molar fraction of the drug in SC-[Formula: see text] varied in the range of [Formula: see text] to [Formula: see text]. The solubility highly depended on the operating pressure and temperature. The Chrastil (0.994), Jouyban et al. (0.993) and Sodeifian et al. (0.992) models showed the highest consistency with the obtained values. Furthermore, self-consistency tests were performed on the solubility of Aripiprazole in SC-[Formula: see text]. The approximate total enthalpy ([Formula: see text]), vaporization enthalpy ([Formula: see text]), and solubility enthalpy ([Formula: see text]) were also calculated.
RESUMO
Activated carbons are used in industrial applications; their cost is a major barrier to their more widespread application. Regeneration of activated carbons is indispensable to minimize operational costs and product wastage. Supercritical carbon dioxide (SC-CO2) as green technology was used to regenerate activated carbons. In this work, response surface methodology was employed to optimize the supercritical regeneration process and to evaluate the effect of the operational parameters including pressure (100-300 bar), temperature (313-333 K), flow rate (2-6 g/min), and dynamic time (30-150 min) on the regeneration yield. The maximum regeneration yield (93.71%) was achieved at 285 bar, 333 K, 4 g/min, and 147 min. Mathematical modeling was done using two one-parameter kinetics models, which agree well with the experimental data. The fitting parameter of the model was obtained by using a differential evolution algorithm. The chemical composition of the substances extracted from the activated carbon was identified by gas chromatography. The results showed that the regeneration of activated carbon by SC-CO2 can be an alternative method to conventional methods.
Assuntos
Carvão Vegetal , Cromatografia com Fluido Supercrítico , Cromatografia com Fluido Supercrítico/métodos , Dióxido de Carbono/química , Porosidade , Hidrocarbonetos , GlicóisRESUMO
Favipiravir is one of the most commonly prescribed drugs in the treatment of COVID-19 in the early stages of the disease. In this work, the solubility of favipiravir was measured in supercritical CO2 at temperatures ranging from 308 to 338 K and pressures ranging from 12 to 30 MPa. The mole fraction solubility of favipiravir was in the range of 3.0 × 10-6 to 9.05 × 10-4. The solubility data were correlated with three types of methods including; (a) density-based models (Chrastil, Garlapati and Madras, Sparks et al., Sodeifian et al., K-J and Keshmiri et al.), (b) Equations of states SRK with quadratic mixing rules) and (c) expanded liquid theory (modified Wilson model). According to the results, modified Wilson and K-J models are generally capable of providing good correlation of solubility. Finally, the approximate values of total ( Δ H total ), vaporization ( Δ H vap ), and solvation ( Δ H sol ) enthalpies were computed.
RESUMO
One of the main steps in choosing the drug nanoparticle production processes by supercritical carbon dioxide (SC-CO2) is determining the solubility of the solid solute. For this purpose, the solubility of Ketoconazole (KTZ) in the SC-CO2, binary system, as well as in the SC-CO2-menthol (cosolvent), ternary system, was measured at 308-338 K and 12-30 MPa using the static analysis method. The KTZ solubility in the SC-CO2 ranged between 0.20 × 10-6 and 8.02 × 10-5, while drug solubility in the SC-CO2 with cosolvent varied from 1.2 × 10-5 to 1.96 × 10-4. This difference indicated the significant effect of menthol cosolvent on KTZ solubility in the SC-CO2. Moreover, KTZ solubilities in the two systems were correlated by several empirical and semiempirical models. Among them, Sodeifian et al., Bian et al., MST, and Bartle et al. models can more accurately correlate experimental data for the binary system than other used models. Also, the Sodeifian and Sajadian model well fitted the solubility data of the ternary system with AARD% = 6.45, Radj = 0.995.
RESUMO
Phthalocyanine green nano pigment was prepared using supercritical gas antisolvent (GAS) process based on the SC-CO2 method. Thermodynamic models were developed to study the volume expansion and operating conditions of the GAS process. Peng-Robinson EoS were applied for binary (CO2 and DMSO) and ternary (CO2, DMSO, and pigment) systems. A Box-Behnken experimental design was used to optimize the process. Influences of temperature (308, 318 and 328 K), pressure (10, 15 and 20 MPa) and solute concentration (10, 40 and 70 mg/mL) were studied on the particles size and their morphology. The fine particles produced were characterized by SEM, DLS, XRD, FTIR and DSC. Experimental results showed a great reduction in size of pigment particles in comparison to the original particles. The mean particle sizes of nanoparticles were obtained to 27.1 nm after GAS based on SC-CO2 method.
RESUMO
Extraction of oil from Dracocephalum kotschyi Boiss seeds using supercritical carbon dioxide was designed using central composite design to evaluate the effect of various operating parameters including pressure, temperature, particle size and extraction time on the oil yield. Maximum extraction yield predicted from response surface method was 71.53% under the process conditions with pressure of 220 bar, temperature of 35 °C, particle diameter of 0.61 mm and extraction time of 130 min. Furthermore, broken and intact cells model was utilised to consider mass transfer kinetics of extracted natural materials. The results revealed that the model had a good agreement with the experimental data. The oil samples obtained via supercritical and solvent extraction methods were analysed by gas chromatography. The most abundant acid was linolenic acid. The results analysis showed that there was no significant difference between the fatty acid contents of the oils obtained by the supercritical and solvent extraction techniques.