Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; : e202400712, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037924

RESUMO

Trifunctional electrocatalysts, an exciting class of materials that can simultaneously catalyze hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR), can significantly enhance the performance and economic viability of electrochemical energy storage and conversion technologies such as water-splitting electrolyzers, metal-air batteries, fuel cells and their integrated devices. Such multifunctional electrocatalysts encompass multiple active sites that can simultaneously catalyze two or more different electrochemical reactions and are feasible routes for addressing global energy and environmental challenges. This review accounts for nanocarbons-based trifunctional electrocatalysts reported for electrolyzers, metal-air batteries and integrated electrolyzer-battery systems, providing a practical perspective. Metal-free and hybrid (hybrids of nanocarbons and transition metals/compounds) trifunctional electrocatalysts are covered. Given the growing importance of green technologies, we discuss biomass-derived carbon-based trifunctional electrocatalysts separately. The collective information provided in the review could help researchers derive more effective and durable trifunctional electrocatalysts suitable for commercial use.

2.
Mar Pollut Bull ; 198: 115790, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007872

RESUMO

Inspired by traditional shaduf technology in the irrigation field, we fabricated a superhydrophobic stainless steel mesh bucket by layering polystyrene and SiO2 nanoparticles through a facile dip coating technique for effective oil-water separation. The superhydrophobic steel mesh bucket could effectively lift oil as well as microplastic pollutants from the water surface. The water contact angle of a two-layered polystyrene-silica coating was 158.5° ± 2°, while the oil contact angle was nearly 0°. The oil-water separation performance of superhydrophobic mesh was tested using several kinds of oil. The separation efficiency achieved for low viscous oil was 99.33 %, while 86.66 % efficiency was recorded for high viscous oil. The superhydrophobic mesh showed high durability against mechanical tests including bending, folding, twisting, adhesive tape tearing (25 cycles), and sandpaper abrasion (20 cycles). The mesh presented admirable thermal and chemical durability. The present superhydrophobic steel mesh bucket is a suitable candidate for large-scale application.


Assuntos
Plásticos , Aço Inoxidável , Poliestirenos , Dióxido de Silício , Aço , Interações Hidrofóbicas e Hidrofílicas
3.
J Environ Sci (China) ; 139: 389-417, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105064

RESUMO

This review provides insight into the current research trend in transition metal oxides (TMOs)-based photocatalysis in removing the organic colouring matters from water. For easy understanding, the research progress has been presented in four generations according to the catalyst composition and mode of application, viz: single component TMOs (the first-generation), doped TMOs/binary TMOs/doped binary TMOs (the second-generation), inactive/active support-immobilized TMOs (the third-generation), and ternary/quaternary compositions (the fourth-generation). The first two generations represent suspended catalysts, the third generation is supported catalysts, and the fourth generation can be suspended or supported. The review provides an elaborated comparison between suspended and supported catalysts, their general/specific requirements, key factors controlling degradation, and the methodologies for performance evaluation. All the plausible fundamental and advanced dye degradation mechanisms involved in each generation of catalysts were demonstrated. The existing challenges in TMOs-based photocatalysis and how the researchers approach the hitch to resolve it effectively are discussed. Future research trends are also presented.


Assuntos
Poluentes Ambientais , Óxidos , Água
4.
Crit Rev Anal Chem ; : 1-26, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878408

RESUMO

Interculturally, corrosion has been counted as one of the most expensive factors toward the retrogression of concrete and metallic structures resulting in huge monetary losses and unanticipated loss of life. To a large extent, corrosion-related catastrophes can be avoided by having the ability to monitor corrosion before structural integrity is jeopardized. This paper critically reviews the various accustomed electrochemical techniques utilized for corrosion monitoring in terms of their definition, timeline, experimental set-up, advantages, and shortcomings. Additionally, literature exploiting these techniques as their corrosion detection technique has been focused on here. Furthermore, a comparison between recently reported methods has been made to provide better insights into the research progress in this arena.

5.
Heliyon ; 9(9): e19362, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37681159

RESUMO

The layered 2D hexagonal boron nitride (h-BN) nanosheets (BNNSs) have received significant attention as effective fillers for composite protective coatings in anti-corrosion, anti-oxidation and anti-wear applications. Vapour deposited h-BN mono/multilayers are related classes well-recognized as protective thin films and coatings. This review comprehensively accounts for the research and development of BNNSs in protective coatings. Chemical vapour deposited (CVD) BN thin films and exfoliated BNNSs-incorporated composite polymer coatings are primarily discussed. Inorganic and nanocarbon-based composite coatings are also covered. Future research potentials are presented.

6.
Langmuir ; 39(17): 6018-6028, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37075327

RESUMO

Screening a green corrosion inhibitor that can prevent Al anode corrosion and enhance the battery performance is highly significant for developing next-generation Al-air batteries. This work explores the non-toxic, environmentally safe, and nitrogen-rich amino acid derivative, N(α)-Boc-l-tryptophan (BCTO), as a green corrosion inhibitor for Al anodes. Our results confirm that BCTO has an excellent corrosion inhibition effect for the Al-5052 alloy in 4 M NaOH solution. An optimum inhibitor addition (2 mM) has increased the Al-air battery performance; the corrosion inhibition efficiency was 68.2%, and the anode utilization efficiency reached 92.0%. The capacity and energy density values increased from 990.10 mA h g-1 and 1317.23 W h kg-1 of the uninhibited system to 2739.70 mA h g-1 and 3723.53 W h kg-1 for the 2 mM BCTO added system. The adsorption behavior of BCTO on the Al-5052 surface was further explored by theoretical calculations. This work paves the way for constructing durable Al-air batteries through an electrolyte regulation strategy.

8.
Chem Rec ; 22(7): e202200053, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35510981

RESUMO

Supramolecules-based drug delivery has attracted significant recent research attention as it could enhance drug solubility, retention time, targeting, and stimuli responsiveness. Among the different supramolecules and assemblies, the macrocycles and the supramolecular hydrogels are the two important categories investigated to a greater extent. Here, we provide the most recent advancements in these categories. Under macrocycles, reports on drug delivery by cyclodextrins, cucurbiturils, calixarenes/pillararenes, crown ethers and porphyrins are detailed. The second category discusses the supramolecular hydrogels of macrocycles/polymers and low molecular weight gelators. The updated information provided could be helpful to advance R & D in this vital area.


Assuntos
Ciclodextrinas , Sistemas de Liberação de Medicamentos , Hidrogéis , Polímeros
9.
Langmuir ; 38(13): 3984-3992, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35319222

RESUMO

N and S codoped carbon dots having good water solubility have been successfully made by a novel hydrothermal method and characterized by FTIR, XPS, and TEM. The as-synthesized CDs were carbon particles rich in polar functional groups less than 10 nm in size. Electrochemical measurements, gravimetry, and surface analysis methods were utilized to examine the inhibition characteristics and adsorption mechanism of CDs on the carbon steel in acid pickling solutions. Electrochemical measurements verified that the CDs displayed adequate protection with high inhibition efficiency of 97.8%. The long-term weight-loss experiments up to 72 h further confirmed the excellent corrosion inhibition at room temperature and 313 K. The results presented are helpful for the formulation of more effective acid pickling corrosion inhibitors.

10.
ACS Biomater Sci Eng ; 8(3): 1049-1059, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35199512

RESUMO

Microorganisms with extracellular electron transfer (EET) capability have gained significant attention for their different biotechnological applications, like biosensors, bioremediation, and microbial fuel cells. Current research affirmed that microbial EET potentially promotes corrosion of iron structures, termed microbiologically influenced corrosion (MIC). The sulfate-reducing (SRB) and nitrate-reducing (NRB) bacteria are the most investigated among the different MIC-promoting bacteria. Unlike extensively studied SRB corrosion, NRB corrosion has received less attention from researchers. Hence, this review focuses on EET by Pseudomonas aeruginosa, a pervasive bacterium competent for developing biofilms in marine habitats and oil pipelines. A comprehensive discussion on the fundamentals of EET mechanisms in MIC is provided first. After that, the review offers state-of-the-art insights into the latest research on the EET-assisted MIC by Pseudomonas aeruginosa. The role of electron transfer mediators has also been discussed to understand the mechanisms involved in a better way. This review will be beneficial to open up new opportunities for developing strategies for combating biocorrosion.


Assuntos
Elétrons , Pseudomonas aeruginosa , Biofilmes , Corrosão
11.
Chem Asian J ; 16(5): 474-491, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465276

RESUMO

Electrophoretic deposition (EPD) is an excellent surface coating approach widely investigated for applications ranging from solar cells, batteries, electrochemical capacitors, solid oxide fuel cells, sensors, molecular sieves, corrosion-resistant coatings, and biomedical materials. On the other hand, superhydrophobic (SHPC) surfaces have enticed substantial recent research interest owing to their superb surface properties. Here, we provide a comprehensive review of electrophoretic-deposited SHPC coatings. Concise descriptions of EPD and superhydrophobicity are provided first, followed by a brief mentioning of works reported on electrophoretic-deposited SHPC coatings by one-step or two-step processing (§2.1). The next section (§2.2) delivers a comprehensive description of these reports based on the micro/nanoparticles used. Works reported in specific applications such as anti-corrosion, biomedical, and oil-separation are described in §2.3. Future scopes of research also presented.

12.
Adv Colloid Interface Sci ; 283: 102245, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32858406

RESUMO

The review provides a comprehensive account of superhydrophobic surfaces fabricated by electrochemical anodic oxidation (anodization). First, reported works on superhydrophobic polymers and metals made by using anodized metal oxide porous templates as moulds are presented (section 2). The next section provides a detailed description of the different fabrication approaches of superhydrophobic surfaces on anodized metallic substrates (section 3.1). The published information on superhydrophobic anodized surfaces in various applications, viz. anti-corrosion, anti-icing, oil separation, and biomedical are systematically covered (section 3.2). Superhydrophobic surfaces fabricated by plasma electrolytic oxidation are also presented (section 4). Future research perspectives debated. The collective information provided is helpful to further advance R & D in making pioneering superhydrophobic anodized nanoporous surfaces.

13.
J Nanosci Nanotechnol ; 15(1): 734-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26328435

RESUMO

Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.


Assuntos
Óxido de Alumínio/química , Técnicas de Química Sintética/métodos , Compostos Férricos/química , Ferro/química , Lítio/química , Nanoestruturas/química , Fosfatos/química , Fosfatos/síntese química , Temperatura Alta , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Água
14.
J Mater Chem B ; 3(35): 7090-7098, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32262711

RESUMO

Electrochemically engineered nanoporous anodized aluminium oxide (AAO) prepared on aluminium (Al) foil by anodization process was employed as a platform for loading different forms of selenium (Se) in order to investigate their release behaviour and potential application for localized drug delivery targeting bone cancer. Several forms of Se including inorganic Se (H2SeO3), organic Se ((C6H5)2Se2), metallic Se, their chitosan composites, electrodeposited (ED) and chemical vapour deposited (CVD) Se were explored and combined with another model drug (indomethacin). Structural, drug-loading and in vitro drug-releasing characteristics of prepared Se-based drug delivery carriers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and UV-visible spectroscopy (UV-Vis), respectively. Sustained and controlled release of Se was demonstrated through chitosan-composites of inorganic, organic or metallic forms of Se loaded into nanoporous AAO carriers. Cell viability studies showed decreasing toxicity to cancer cells in the order: inorganic Se > ED Se > CVD Se > metallic Se > organic Se. The study suggests new alternatives for localized drug treatment based on low-cost nano-engineered carriers loaded with Se having anti-cancer properties.

15.
ChemSusChem ; 5(7): 1146-61, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22693154

RESUMO

The electrochemical behaviors of molybdenum and its oxides, both in bulk and thin film dimensions, are critical because of their widespread applications in steels, electrocatalysts, electrochromic materials, batteries, sensors, and solar cells. An important area of current interest is electrodeposited CIGS-based solar cells where a molybdenum/glass electrode forms the back contact. Surprisingly, the basic electrochemistry of molybdenum and its oxides has not been reviewed with due attention. In this Review, we assess the scattered information. The potential and pH dependent active, passive, and transpassive behaviors of molybdenum in aqueous media are explained. The major surface oxide species observed, reversible redox transitions of the surface oxides, pseudocapacitance and catalytic reduction are discussed along with carefully conducted experimental results on a typical molybdenum glass back contact employed in CIGS-based solar cells. The applications of molybdenum oxides and the electrodeposition of molybdenum are briefly reviewed.


Assuntos
Eletroquímica/métodos , Molibdênio/química , Óxidos/química , Fontes de Energia Elétrica , Eletrodos , Lítio/química
16.
Phys Chem Chem Phys ; 13(43): 19226-37, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21989673

RESUMO

Nanostructured materials have attracted recent research interest as battery materials due to their expected enhancement of properties. The characteristic nanoscale dimension and its structuring guarantees improved charge and mass transfer during charge/discharge processes. Among the potential cathode materials investigated as a substitute to LiCoO(2), one of the most promising materials is LiFePO(4) with olivine structure (LFP). In this perspective article, the current research and development in the synthesis and electrochemical studies of nanostructured LFP are reviewed with a special emphasis on one-dimensional (1D) nanostructures and nanocompositing with 1D conductive materials. In addition to various examples of 1D LFP with detailed synthetic methods, why 1D nanostructures could be meaningful is discussed in terms of a geometric point of view and the anisotropic lithiation/de-lithiation mechanism of LFP.

17.
Nanoscale Res Lett ; 6(1): 521, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21888639

RESUMO

There are many practical difficulties in direct adsorption of polymers onto nanocrystalline inorganic oxide surface such as Al2O3 and TiO2 mainly due to the insolubility of polymers in solvents or polymer agglomeration during adsorption process. As an alternative approach to the direct polymer adsorption, we propose surface-bound polymerization of pre-adsorbed monomers. 6-(3-Thienyl)hexanoic acid (THA) was used as a monomer for poly[3-(5-carboxypentyl)thiophene-2,5-diyl] (PTHA). PTHA-coated nanocrystalline TiO2/FTO glass electrodes were prepared by immersing THA-adsorbed electrodes in FeCl3 oxidant solution. Characterization by ultraviolet/visible/infrared spectroscopy and thermal analysis showed that the monolayer of regiorandom-structured PTHA was successfully formed from intermolecular bonding between neighbored THA surface-bound to TiO2. The anchoring functional groups (-COOH) of the surface-crawling PTHA were completely utilized for strong bonding to the surface of TiO2.

18.
J Nanosci Nanotechnol ; 10(7): 4635-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21128470

RESUMO

Highly ordered nanotube oxide layers were developed on low rigidity quaternary beta-type Ti-35Nb-5Ta-7Zr alloy by controlled anodic oxidation in electrolyte containing 1 M H3PO4 and 0.5 wt% NaF at room temperature. The diameters of the nanotubes formed were in the range of 30 to 80 nm. Electrochemical corrosion behavior of the nanotubular alloy was studied in Ringer's solution at 37 +/- 1 degrees C using potentiodynamic polarization and AC Impedance. The result of the study showed that nanotube formation on the surface affect the passivation behavior of the quaternary alloy significantly. However the corrosion current density was considerably higher for the nanotubular alloy.


Assuntos
Ligas , Nanotubos , Titânio/química , Eletrodos , Microscopia Eletrônica de Varredura , Oxirredução , Difração de Raios X
19.
Acta Biomater ; 5(6): 2303-10, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19289307

RESUMO

Highly ordered nanoporous and nanotubular oxide layers were developed on low-rigidity beta Ti-35Nb-5Ta-7Zr alloy by controlled DC anodization in electrolyte containing 1M H(3)PO(4) and 0.5wt.% NaF at room temperature. The as-formed and crystallized nanotubes were characterized by electron microscopy, energy-dispersive X-ray spectrometry and X-ray diffraction. The electrochemical passivation behavior of the nanoporous and nanotubular oxide surfaces were investigated in Ringer's solution at 37+/-1 degrees C employing a potentiodynamic polarization technique and impedance spectroscopy. The diameters of the as-formed nanotubes were in the range of 30-80nm. The nanotubular surface exhibited passivation behavior similar to that of the nanoporous surface. However, the corrosion current density was considerably higher for the nanotubular alloy. The surface after nanotube formation seemed to favor an immediate and effective passivation. Electrochemical impedance spectra were simulated by equivalent circuits and the results were discussed with regard to biomedical applications.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Óxidos/química , Titânio/química , Ligas/química , Cristalização/métodos , Eletroquímica/métodos , Teste de Materiais , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA