Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Prog Mol Biol Transl Sci ; 189(1): 67-99, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35595353

RESUMO

Dogs are remarkable, adaptable, and dependable creatures that have evolved alongside humans while contributing tremendously to our survival. Our canine companions share many similarities to human disease, particularly cancer. With the advancement of next-generation sequencing technology, we are beginning to unravel the complexity of cancer and the vast intra- and intertumoral heterogeneity that makes treatment difficult. Consequently, precision medicine has emerged as a therapeutic approach to improve patient survival by evaluating and classifying an individual tumor's molecular profile. Many canine and human cancers share striking similarities in terms of genotypic, phenotypic, clinical, and histological presentations. Dogs are superior to rodent models of cancer because they are a naturally heterogeneous population in which tumors occur spontaneously, are exposed to similar environmental conditions, and show more similarities in key modulators of tumorigenesis and clinical response, including the immune system, drug metabolism, and gut microbiome. In this chapter, we will explore various canine models of human cancers and emphasize the dog's critical role in advancing precision medicine and improving the survival of both man and man's best friend.


Assuntos
Doenças do Cão , Neoplasias , Animais , Carcinogênese , Doenças do Cão/tratamento farmacológico , Cães , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/terapia , Medicina de Precisão
2.
Mol Ther Methods Clin Dev ; 24: 255-267, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35211638

RESUMO

Despite the high safety profile demonstrated in clinical trials, the immunogenicity of adeno-associated virus (AAV)-mediated gene therapy remains a major hurdle. Specifically, T-cell-mediated immune responses to AAV vectors are related to loss of efficacy and potential liver toxicities. As post-translational modifications in T cell epitopes have the potential to affect immune reactions, the cellular immune responses to peptides derived from spontaneously deamidated AAV were investigated. Here, we report that highly deamidated sites in AAV9 contain CD4 T cell epitopes with a Th1 cytokine pattern in multiple human donors with diverse human leukocyte antigen (HLA) backgrounds. Furthermore, some peripheral blood mononuclear cell (PBMC) samples demonstrated differential T cell activation to deamidated or non-deamidated epitopes. Also, in vitro and in silico HLA binding assays showed differential binding to the deamidated or non-deamidated peptides in some HLA alleles. This study provides critical attributes to vector-immune-mediated responses, as AAV deamidation can impact the immunogenicity, safety, and efficacy of AAV-mediated gene therapy in some patients.

3.
Lab Invest ; 101(12): 1627-1636, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34417549

RESUMO

Genetically modified oncolytic adenoviruses have been proposed as a vehicle for cancer therapy. However, several concerns, such as toxicity to normal cells and organs, lack of suitable cell surface receptors to allow viral entry to the desired cell type(s), and activation of both innate and adaptive immune systems in patients, restrict the successful clinical application of adenoviral-mediated cancer gene therapy. Successful virotherapy will require efficient transductional and transcriptional targeting to enhance therapeutic efficacy by ensuring targeted adenoviral infection, replication, and/or therapeutic transgene expression. Targeted modification of viral components, such as viral capsid, fiber knob, and the insertion of transgenes for expression, are prerequisites for the necessary transductional and transcriptional targeting of adenovirus. However, the conventional approach to modify the adenoviral genome is complex, time consuming, and expensive. It is dependent on the presence of unique restriction enzyme sites that may or may not be present in the target location. Clustered regularly interspaced short palindromic repeat (CRISPR) along with the RNA-guided nuclease Cas9 (CRISPR/Cas9) is one of the most powerful tools that has been adopted for precise genome editing in a variety of cells and organisms. However, the ability of the CRISPR/Cas9 system to precisely and efficiently make genetic modification, as well as introduce gene replacements, in adenoviral genomes, remains essentially unknown. Herein the ability of in vitro CRISPR/CAS9-mediated editing of the canine adenovirus type 2 (CAV2) genome to promote targeted modification of the viral genome was assessed. To demonstrate the feasibility of this goal, CRISPR/Cas9 has been used to successfully insert the RFP (red fluorescent protein) reporter construct into the CAV2 genome. Initial results demonstrated high efficiency and accuracy for in vitro CRISPR-mediated editing of the large CAV2 genome. Furthermore, this application was expanded, using multiple guide RNAs, to conduct gene replacement in the CAV2 genome by substituting a portion of the E3 gene with a construct designed to express a single chain antibody to canine PD-1. Thus, this work provides a significantly improved and efficient method for targeted editing of adenoviruses to generate altered and potentially therapeutic viral genomes in the shortest possible time.


Assuntos
Adenovirus Caninos/genética , Edição de Genes , Animais , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cães , Genoma Viral , Terapia Viral Oncolítica , Reparo de DNA por Recombinação
4.
PLoS One ; 15(11): e0240807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33166332

RESUMO

Gene therapy is a promising treatment option for cancer. However, its utility may be limited due to expression in off-target cells. Cancer-specific promoters such as telomerase reverse transcriptase (TERT), survivin, and chemokine receptor 4 (CXCR4) have enhanced activity in a variety of human and murine cancers, however, little has been published regarding these promoters in dogs. Given the utility of canine cancer models, the activity of these promoters along with adenoviral E2F enhanced E1a promoter (EEE) was evaluated in a variety of canine tumors, both from the endogenous gene and from exogenously administered constructs. Endogenous expression levels were measured for cTERT, cSurvivin, and cCXCR4 and were low for all three, with some non-malignant and some tumor cell lines and tissues expressing the gene. Expression levels from exogenously supplied promoters were measured by both the number of cells expressing the construct and the intensity of expression in individual cells. Exogenously supplied promoters were active in more cells in all tumor lines than in normal cells, with the EEE promoter being most active, followed by cTERT. The intensity of expression varied more with cell type than with specific promoters. Ultimately, no single promoter was identified that would result in reliable expression, regardless of the tumor type. Thus, these findings imply that identification of a pan-cancer promoter may be difficult. In addition, this data raises the concern that endogenous expression analysis may not accurately predict exogenous promoter activity.


Assuntos
Doenças do Cão/genética , Neoplasias/veterinária , Regiões Promotoras Genéticas , Regulação para Cima , Animais , Linhagem Celular Tumoral , Cães , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células Madin Darby de Rim Canino , Neoplasias/genética
5.
Biotechniques ; 68(6): 311-317, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301333

RESUMO

Extracting sufficient quantity and quality RNA from bone is essential for downstream application, such as transcriptomic sequencing, to evaluate gene expression. Isolation of RNA from bone presents a unique challenge owing to the hypocellular, brittle and mineralized matrix, which makes homogenizing the tissue difficult and provides little RNA to work with. Removal of contaminating tissue, such as bone marrow and connective tissue, is essential for isolating RNA that is unique to osteoblasts, osteoclasts and osteocytes. This study established a method to effectively isolate RNA from normal canine bone cells using the phalanges, without contamination from other tissue types, for downstream transcriptomic analysis.


Assuntos
Osso e Ossos/química , Biologia Molecular/métodos , RNA/isolamento & purificação , Transcriptoma/genética , Animais , Cães , Regulação da Expressão Gênica/genética , Osteoblastos/química , Osteoclastos/química , Osteócitos/química , RNA/química , RNA/genética
6.
PLoS One ; 12(1): e0169532, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28068367

RESUMO

Adenoviruses are the most widely used vectors in cancer gene therapy. Adenoviruses vectors are well characterized and are easily manipulated. Adenovirus serotype 5 (Ad5) is the most commonly used human serotype. Ad5 internalization into host cells is a combined effect of binding of Ad5 fiber knob with the coxsackie virus and adenovirus receptor (CAR) and binding of RGD motifs in viral penton to cell surface integrins (αvß3, αvß5). Ad5's wide range of host-cell transduction and lack of integration into the host genome have made it an excellent choice for cancer therapeutics. However, Ad5 has limited ability to transduce cells of hematopoietic origin. It has been previously reported that low or no expression of CAR is a potential obstacle to Ad5 infection in hematopoietic origin cells. In addition, we have previously reported that low levels of cell surface integrins (αvß3, αvß5) may inhibit Ad5 infection in canine lymphoma cell lines. In the current report we have examined the ability of an Ad5 vector to infect human (HEK293) and canine non-cancerous (NCF and PBMC), canine non-hematopoietic origin cancer (CMT28, CML7, and CML10), and canine hematopoietic origin cancer (DH82, 17-71, OSW, MPT-1, and BR) cells. In addition, we have quantified CAR, αvß3 and αvß5 integrin transcript expression in these cells by using quantitative reverse transcriptase PCR (q-RT-PCR). Low levels of integrins were present in MPT1, 17-71, OSW, and PBMC cells in comparison to CMT28, DH82, and BR cells. CAR mRNA levels were comparatively higher in MPT1, 17-71, OSW, and PBMC cells. This report confirms and expands the finding that low or absent expression of cell surface integrins may be the primary reason for the inability of Ad5-based vectors to transduce cells of lymphocytic origin and some myeloid cells but this is not true for all hematopoietic origin cells. For efficient use of Ad5-based therapeutic vectors in cancers of lymphocytic origin, it is important to address the defects in cell surface integrins.


Assuntos
Adenovírus Humanos/fisiologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Integrinas/metabolismo , Linfócitos/metabolismo , Linfócitos/virologia , Transdução Genética , Animais , Linhagem Celular , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Cães , Expressão Gênica , Genes Reporter , Humanos , Integrinas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA