RESUMO
BACKGROUND: Airway basal cells (BC) from patients with chronic obstructive pulmonary disease (COPD) regenerate abnormal airway epithelium and this was associated with reduced expression of several genes involved in epithelial repair. Quercetin reduces airway epithelial remodeling and inflammation in COPD models, therefore we examined whether quercetin promotes normal epithelial regeneration from COPD BC by altering gene expression. METHODS: COPD BC treated with DMSO or 1 µM quercetin for three days were cultured at air/liquid interface (ALI) for up to 4 weeks. BC from healthy donors cultured at ALI were used as controls. Polarization of cells was determined at 8 days of ALI. The cell types and IL-8 expression in differentiated cell cultures were quantified by flow cytometry and ELISA respectively. Microarray analysis was conducted on DMSO or 1 µM quercetin-treated COPD BC for 3 days to identify differentially regulated genes (DEG). Bronchial brushings obtained from COPD patients with similar age and disease status treated with either placebo (4 subjects) or 2000 mg/day quercetin (7 subjects) for 6 months were used to confirm the effects of quercetin on gene expression. RESULTS: Compared to placebo-, quercetin-treated COPD BC showed significantly increased transepithelial resistance, more ciliated cells, fewer goblet cells, and lower IL-8. Quercetin upregulated genes associated with tissue and epithelial development and differentiation in COPD BC. COPD patients treated with quercetin, but not placebo showed increased expression of two developmental genes HOXB2 and ELF3, which were also increased in quercetin-treated COPD BC with FDR < 0.001. Active smokers showed increased mRNA expression of TGF-ß (0.067) and IL-8 (22.0), which was reduced by 3.6 and 4.14 fold respectively after quercetin treatment. CONCLUSIONS: These results indicate that quercetin may improve airway epithelial regeneration by increasing the expression of genes involved in epithelial development/differentiation in COPD. TRIAL REGISTRATION: This study was registered at ClinicalTrials.gov on 6-18-2019. The study number is NCT03989271.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Quercetina , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Quercetina/metabolismo , Interleucina-8/metabolismo , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Brônquios/metabolismo , Células Epiteliais/metabolismo , Células Cultivadas , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/farmacologiaRESUMO
Background: Airway epithelial cells from patients with COPD show suboptimal innate immune responses to nontypeable Haemophilus influenzae (NTHi) and Toll-like receptor (TLR)2 ligands despite expressing TLR2 similar to normal airway epithelial cells, but the underlying mechanisms are poorly understood. Methods: Normal or COPD mucociliary-differentiated airway epithelial cells were treated with TLR2 agonists or infected with NTHi and expression of ß-defensin (HBD)2 was examined. Interleukin-1 receptor-associated kinase (IRAK)-1 and microRNA (miR)146a were genetically inhibited in normal and COPD airway epithelial cell cultures, respectively, and HBD2 responses to TLR2 ligands were determined. IRAK-1 expression in lung sections was determined by immunofluorescence microscopy. Results: Compared to normal, COPD airway epithelial cell cultures showed impaired expression of HBD2 in response to TLR2 agonists or NTHi infection. Apical secretions from TLR2 agonist-treated normal, but not COPD, airway epithelial cells efficiently killed NTHi. Knockdown of HBD2 significantly reduced NTHi killing by apical secretions of normal airway epithelial cells. Compared to normal, COPD cells showed significantly reduced expression of IRAK-1 and this was associated with increased expression of miR146a. Inhibition of miR146a increased the expression of IRAK-1, improved the expression of HBD2 in response to TLR2 agonists in COPD cells and enhanced the killing of bacteria by apical secretions obtained from TLR2 agonist-treated COPD cells. Bronchial epithelium of COPD patients showed reduced expression of IRAK-1. Conclusions: These results suggest that reduced levels of IRAK-1 due to increased expression of miR146a may contribute to impaired expression of TLR2-induced HBD2 in COPD airway epithelial cells.
RESUMO
Dipeptidyl peptidase 4 (DPP4) expression is increased in the lungs of chronic obstructive pulmonary disease (COPD). DPP4 is known to be associated with inflammation in various organs, including LPS-induced acute lung inflammation. Since non-typeable Haemophilus influenzae (NTHi) causes acute exacerbations in COPD patients, we examined the contribution of DPP4 in NTHi-induced lung inflammation in COPD. Pulmonary macrophages isolated from COPD patients showed higher expression of DPP4 than the macrophages isolated from normal subjects. In response to NTHi infection, COPD, but not normal macrophages show a further increase in the expression of DPP4. COPD macrophages also showed higher expression of IL-1ß, and CCL3 responses to NTHi than normal, and treatment with DPP4 inhibitor, diprotin A attenuated this response. To examine the contribution of DPP4 in NTHi-induced lung inflammation, COPD mice were infected with NTHi, treated with diprotin A or PBS intraperitoneally, and examined for DPP4 expression, lung inflammation, and cytokine expression. Mice with COPD phenotype showed increased expression of DPP4, which increased further following NTHi infection. DPP4 expression was primarily observed in the infiltrated inflammatory cells. NTHi-infected COPD mice also showed sustained neutrophilic lung inflammation and expression of CCL3, and this was inhibited by DPP4 inhibitor. These observations indicate that enhanced expression of DPP4 in pulmonary macrophages may contribute to sustained lung inflammation in COPD following NTHi infection. Therefore, inhibition of DPP4 may reduce the severity of NTHi-induced lung inflammation in COPD.
Assuntos
Dipeptidil Peptidase 4/metabolismo , Infecções por Haemophilus/enzimologia , Haemophilus influenzae/patogenicidade , Macrófagos Alveolares/enzimologia , Pneumonia Bacteriana/enzimologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Idoso , Animais , Estudos de Casos e Controles , Quimiocina CCL20/metabolismo , Quimiocina CCL3/metabolismo , Modelos Animais de Doenças , Feminino , Infecções por Haemophilus/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Interleucina-1beta/metabolismo , Macrófagos Alveolares/microbiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Pneumonia Bacteriana/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologiaRESUMO
INTRODUCTION: Quercetin is a plant flavonoid and has potent antioxidant and anti-inflammatory properties. In a preclinical model of chronic obstructive pulmonary disease (COPD), quercetin reduced markers of both oxidative stress and lung inflammation and also reduced rhinovirus-induced progression of lung disease. Although quercetin appears to be an attractive natural alternative to manage COPD, the safety of quercetin supplementation in this population is unknown. METHODS: We recruited COPD patients with mild-to-severe lung disease with FVE1 ranging between >35% and <80% and supplemented with either placebo or quercetin at 500, 1000 or 2000 mg/day in a dose-escalation manner. The duration of quercetin supplementation was 1 week. RESULTS: Patients had no study drug-related severe adverse events based on blood tests, which included both complete blood counts and evaluation of comprehensive metabolic panel. One of the patients reported mild adverse events included gastro-oesophageal reflux disease, which was observed in both placebo and quercetin groups. CONCLUSIONS: Quercetin was safely tolerated up to 2000 mg/day as assessed by lung function, blood profile and COPD assessment test questionnaire. TRIAL REGISTRATION NUMBER: NCT01708278.
Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Quercetina/administração & dosagem , Idoso , Anti-Inflamatórios/efeitos adversos , Antioxidantes/efeitos adversos , Glicemia , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Quercetina/efeitos adversos , Testes de Função Respiratória , Índice de Gravidade de DoençaRESUMO
IFN responses to viral infection are necessary to establish intrinsic antiviral state, but if unchecked can lead to heightened inflammation. Recently, we showed that TLR2 activation contributes to limitation of rhinovirus (RV)-induced IFN response in the airway epithelial cells. We also demonstrated that compared with normal airway epithelial cells, those from patients with chronic obstructive pulmonary disease (COPD) show higher IFN responses to RV, but the underlying mechanisms are not known. Initially, RV-induced IFN responses depend on dsRNA receptor activation and then are amplified via IFN-stimulated activation of JAK/STAT signaling. In this study, we show that in normal cells, TLR2 limits RV-induced IFN responses by attenuating STAT1 and STAT2 phosphorylation and this was associated with TLR2-dependent SIRT-1 expression. Further, inhibition of SIRT-1 enhanced RV-induced IFN responses, and this was accompanied by increased STAT1/STAT2 phosphorylation, indicating that TLR2 may limit RV-induced IFN responses via SIRT-1. COPD airway epithelial cells showed attenuated IL-8 responses to TLR2 agonist despite expressing TLR2 similar to normal, indicating dysregulation in TLR2 signaling pathway. Unlike normal, COPD cells failed to show RV-induced TLR2-dependent SIRT-1 expression. Pretreatment with quercetin, which increases SIRT-1 expression, normalized RV-induced IFN levels in COPD airway epithelial cells. Inhibition of SIRT-1 in quercetin-pretreated COPD cells abolished the normalizing effects of quercetin on RV-induced IFN expression in these cells, confirming that quercetin exerts its effect via SIRT-1. In summary, we show that TLR2 is required for limiting RV-induced IFNs, and this pathway is dysregulated in COPD airway epithelial cells, leading to exaggerated IFN production.
Assuntos
Brônquios/imunologia , Interferons/biossíntese , Doença Pulmonar Obstrutiva Crônica/etiologia , Rhinovirus/patogenicidade , Sirtuína 1/fisiologia , Receptor 2 Toll-Like/fisiologia , Células Cultivadas , Células Epiteliais , Humanos , Helicase IFIH1 Induzida por Interferon/fisiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , RNA de Cadeia Dupla/fisiologia , Fatores de Transcrição STAT/fisiologia , Transdução de Sinais/fisiologia , Sirtuína 1/genética , Proteína 1 Supressora da Sinalização de Citocina/fisiologiaRESUMO
Rhinovirus (RV), which is associated with acute exacerbations, also causes persistent lung inflammation in patients with chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are not well-known. Recently, we demonstrated that RV causes persistent lung inflammation with accumulation of a subset of macrophages (CD11b+/CD11c+), and CD8+ T cells, and progression of emphysema. In the present study, we examined the mechanisms underlying the RV-induced persistent inflammation and progression of emphysema in mice with COPD phenotype. Our results demonstrate that at 14 days post-RV infection, in addition to sustained increase in CCL3, CXCL-10 and IFN-γ expression as previously observed, levels of interleukin-33 (IL-33), a ligand for ST2 receptor, and matrix metalloproteinase (MMP)12 are also elevated in mice with COPD phenotype, but not in normal mice. Further, MMP12 was primarily expressed in CD11b+/CD11c+ macrophages. Neutralization of ST2, reduced the expression of CXCL-10 and IFN-γ and attenuated accumulation of CD11b+/CD11c+ macrophages, neutrophils and CD8+ T cells in COPD mice. Neutralization of IFN-γ, or ST2 attenuated MMP12 expression and prevented progression of emphysema in these mice. Taken together, our results indicate that RV may stimulate expression of CXCL-10 and IFN-γ via activation of ST2/IL-33 signaling axis, which in turn promote accumulation of CD11b+/CD11c+ macrophages and CD8+ T cells. Furthermore, RV-induced IFN-γ stimulates MMP12 expression particularly in CD11b+/CD11c+ macrophages, which may degrade alveolar walls thus leading to progression of emphysema in these mice. In conclusion, our data suggest an important role for ST2/IL-33 signaling axis in RV-induced pathological changes in COPD mice.
Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-33/imunologia , Infecções por Picornaviridae/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Rhinovirus/fisiologia , Animais , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/virologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/virologiaAssuntos
Fumar Cigarros , Mycobacterium tuberculosis , Tuberculose , Metabolismo Energético , Humanos , FumantesRESUMO
Acute exacerbations are the major cause of morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD). Rhinovirus, which causes acute exacerbations may also accelerate progression of lung disease in these patients. Current therapies reduces the respiratory symptoms and does not treat the root cause of exacerbations effectively. We hypothesized that quercetin, a potent antioxidant and anti-inflammatory agent with antiviral properties may be useful in treating rhinovirus-induced changes in COPD. Mice with COPD phenotype maintained on control or quercetin diet and normal mice were infected with sham or rhinovirus, and after 14 days mice were examined for changes in lung mechanics and lung inflammation. Rhinovirus-infected normal mice showed no changes in lung mechanics or histology. In contrast, rhinovirus-infected mice with COPD phenotype showed reduction in elastic recoiling and increase in lung inflammation, goblet cell metaplasia, and airways cholinergic responsiveness compared to sham-infected mice. Interestingly, rhinovirus-infected mice with COPD phenotype also showed accumulation of neutrophils, CD11b+/CD11c+ macrophages and CD8+ T cells in the lungs. Quercetin supplementation attenuated rhinovirus-induced all the pathologic changes in mice with COPD phenotype. Together these results indicate that quercetin effectively mitigates rhinovirus-induced progression of lung disease in a mouse model of COPD. Therefore, quercetin may be beneficial in the treatment of rhinovirus-associated exacerbations and preventing progression of lung disease in COPD.
Assuntos
Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/virologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Quercetina/farmacologia , Rhinovirus , Animais , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Biópsia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Fenótipo , Infecções por Picornaviridae/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Rhinovirus/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologiaRESUMO
Rhinovirus (RV), which causes exacerbation in patients with chronic airway diseases, readily infects injured airway epithelium and has been reported to delay wound closure. In this study, we examined the effects of RV on cell repolarization and differentiation in a model of injured/regenerating airway epithelium (polarized, undifferentiated cells). RV causes only a transient barrier disruption in a model of normal (mucociliary-differentiated) airway epithelium. However, in the injury/regeneration model, RV prolongs barrier dysfunction and alters the differentiation of cells. The prolonged barrier dysfunction caused by RV was not a result of excessive cell death but was instead associated with epithelial-to-mesenchymal transition (EMT)-like features, such as reduced expression of the apicolateral junction and polarity complex proteins, E-cadherin, occludin, ZO-1, claudins 1 and 4, and Crumbs3 and increased expression of vimentin, a mesenchymal cell marker. The expression of Snail, a transcriptional repressor of tight and adherence junctions, was also up-regulated in RV-infected injured/regenerating airway epithelium, and inhibition of Snail reversed RV-induced EMT-like features. In addition, compared with sham-infected cells, the RV-infected injured/regenerating airway epithelium showed more goblet cells and fewer ciliated cells. Inhibition of epithelial growth factor receptor promoted repolarization of cells by inhibiting Snail and enhancing expression of E-cadherin, occludin, and Crumbs3 proteins, reduced the number of goblet cells, and increased the number of ciliated cells. Together, these results suggest that RV not only disrupts barrier function, but also interferes with normal renewal of injured/regenerating airway epithelium by inducing EMT-like features and subsequent goblet cell hyperplasia.
RESUMO
Nitric oxide (NO) is a key immune defense agent that is produced from l-arginine in the airways by leukocytes and airway epithelial cells, primarily via inducible nitric oxide synthase (iNOS). Deficiencies in nasal NO levels have been associated with diseases such as primary ciliary dyskinesia and chronic rhinosinusitis. Herein, we demonstrate a proof-of-concept regarding a potential new therapeutic approach for such disorders. We show that arginine-rich low molecular weight peptides (LMWPs) derived from the FDA-approved protamine (obtained from salmon sperm) are effective at significantly raising NO production in both RAW 264.7 mouse macrophage and LA4 mouse epithelial cell lines. LMWP is produced using a stable, easily produced immobilized thermolysin gel column followed by size-exclusion purification. Monomeric l-arginine induces concentration-dependent increases in NO production in stimulated RAW 264.7 and LA4 cells, as measured by stable nitrite in the cell media. In stimulated RAW 264.7 cells, LMWP significantly increases iNOS expression and total NO production 12-24 h post-treatment compared to cells given equivalent levels of monomeric l-arginine. For stimulated LA4 cells, LMWPs are effective in significantly increasing NO production compared to equivalent l-arginine monomer concentrations over 24 h but do not substantially enhance iNOS expression. The use of the arginase inhibitor S-boronoethyl-l-cysteine in combination with LMWPs results in even higher NO production by stimulated RAW 264.7 cells and LA4 cells. Increases in NO due to LMWPs, compared to l-arginine, occur only after 4 h, which may be due to iNOS elevation rather than increased substrate availability.
Assuntos
Óxido Nítrico Sintase Tipo II/metabolismo , Peptídeos/uso terapêutico , Protaminas/uso terapêutico , Rinite Alérgica/tratamento farmacológico , Animais , Arginase/metabolismo , Arginina/metabolismo , Linhagem Celular , Cisteína/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Peso Molecular , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Rinite Alérgica/metabolismoRESUMO
BACKGROUND: Decreased activity of forkhead transcription factor class O (FoxO)3A, a negative regulator of NF-κB-mediated chemokine expression, is implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Previously, we showed that quercetin reduces lung inflammation in a murine model of COPD. Here, we examined the mechanisms underlying decreased FoxO3A activation and its modulation by quercetin in COPD human airway epithelial cells and in a COPD mouse model. METHODS: Primary COPD and normal human airway epithelial cells were treated with quercetin, LY294002 or erlotinib for 2 weeks. IL-8 was measured by ELISA. FoxO3A, Akt, and epidermal growth factor (EGF) receptor (EGFR) phosphorylation and nuclear FoxO3A levels were determined by Western blot analysis. Effects of quercetin on lung chemokine expression, nuclear FoxO3A levels and phosphorylation of EGFR and Akt were determined in COPD mouse model. RESULTS: Compared with normal, COPD cells showed significantly increased IL-8, which negatively correlated with nuclear FoxO3A levels. COPD bronchial biopsies also showed reduced nuclear FoxO3A. Decreased FoxO3A in COPD cells was associated with increased phosphorylation of EGFR, Akt and FoxO3A and treatment with quercetin, LY294002 or erlotinib increased nuclear FoxO3A and decreased IL-8 and phosphorylation of Akt, EGFR and FoxO3A, Compared with control, elastase/LPS-exposed mice showed decreased nuclear FoxO3A, increased chemokines and phosphorylation of EGFR and Akt. Treatment with quercetin partially reversed these changes. CONCLUSIONS: In COPD airways, aberrant EGFR activity increases PI 3-kinase/Akt-mediated phosphorylation of FoxO3A, thereby decreasing nuclear FoxO3A and increasing chemokine expression. Quercetin restores nuclear FoxO3A and reduces chemokine expression partly by modulating EGFR/PI 3-kinase/Akt activity.
Assuntos
Receptores ErbB/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Interleucina-8/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/metabolismo , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Núcleo Celular/química , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Proteína Forkhead Box O3 , Humanos , Imuno-Histoquímica , Interleucina-8/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Quercetina/administração & dosagem , Quercetina/farmacologia , Mucosa Respiratória/efeitos dos fármacosRESUMO
Bacterial infections following rhinovirus (RV), a common cold virus, are well documented, but pathogenic mechanisms are poorly understood. We developed animal and cell culture models to examine the effects of RV on subsequent infection with non-typeable Hemophilus influenzae (NTHi). We focused on NTHI-induced neutrophil chemoattractants expression that is essential for bacterial clearance. Mice infected with RV1B were superinfected with NTHi and lung bacterial density, chemokines and neutrophil counts determined. Human bronchial epithelial cells (BEAS-2B) or mouse alveolar macrophages (MH-S) were infected with RV and challenged with NHTi, TLR2 or TLR5 agonists. Chemokine levels were measured by ELISA and expression of IRAK-1, a component of MyD88-dependent TLR signaling, assessed by immunoblotting. While sham-infected mice cleared all NTHi from the lungs, RV-infected mice showed bacteria up to 72 h post-infection. However, animals in RV/NTHi cleared bacteria by day 7. Delayed bacterial clearance in RV/NTHi animals was associated with suppressed chemokine levels and neutrophil recruitment. RV-infected BEAS-2B and MH-S cells showed attenuated chemokine production after challenge with either NTHi or TLR agonists. Attenuated chemokine responses were associated with IRAK-1 protein degradation. Inhibition of RV-induced IRAK-1 degradation restored NTHi-stimulated IL-8 expression. Knockdown of TLR2, but not other MyD88-dependent TLRs, also restored IRAK-1, suggesting that TLR2 is required for RV-induced IRAK-1 degradation.In conclusion, we demonstrate for the first time that RV infection delays bacterial clearance in vivo and suppresses NTHi-stimulated chemokine responses via degradation of IRAK-1. Based on these observations, we speculate that modulation of TLR-dependent innate immune responses by RV may predispose the host to secondary bacterial infection, particularly in patients with underlying chronic respiratory disorders.
Assuntos
Infecções por Haemophilus/complicações , Infecções por Haemophilus/imunologia , Haemophilus influenzae/imunologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-8/imunologia , Infecções por Picornaviridae/complicações , Rhinovirus/patogenicidade , Receptor 2 Toll-Like/metabolismo , Animais , Carga Bacteriana , Quimiocinas/sangue , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Infecções por Haemophilus/microbiologia , Humanos , Contagem de Leucócitos , Pulmão/microbiologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Infecções por Picornaviridae/virologia , Receptor 2 Toll-Like/genética , Receptor 5 Toll-Like/metabolismoRESUMO
Despite increased morbidity associated with secondary respiratory viral infections in cystic fibrosis (CF) patients with chronic Pseudomonas aeruginosa infection, the underlying mechanisms are not well understood. Here, we investigated the effect of P. aeruginosa infection on the innate immune responses of bronchial epithelial cells to rhinovirus (RV) infection. CF cells sequentially infected with mucoid P. aeruginosa (MPA) and RV showed lower levels of interferons (IFNs) and higher viral loads than those of RV-infected cells. Unlike results for CF cells, normal bronchial epithelial cells coinfected with MPA/RV showed higher IFN expression than RV-infected cells. In both CF and normal cells, the RV-stimulated IFN response requires phosphorylation of Akt and interferon response factor 3 (IRF3). Preinfection with MPA inhibited RV-stimulated Akt phosphorylation and decreased IRF3 phosphorylation in CF cells but not in normal cells. Compared to normal, unstimulated CF cells or normal cells treated with CFTR inhibitor showed increased reactive oxygen species (ROS) production. Treatment of CF cells with antioxidants prior to MPA infection partially reversed the suppressive effect of MPA on the RV-stimulated IFN response. Together, these results suggest that MPA preinfection inhibits viral clearance by suppressing the antiviral response particularly in CF cells but not in normal cells. Further, increased oxidative stress in CF cells appears to modulate the innate immune responses to coinfection.
Assuntos
Brônquios , Fibrose Cística/imunologia , Células Epiteliais , Interferons/metabolismo , Pseudomonas aeruginosa/patogenicidade , Rhinovirus/imunologia , Adolescente , Adulto , Antivirais/imunologia , Antivirais/metabolismo , Brônquios/citologia , Brônquios/imunologia , Brônquios/microbiologia , Brônquios/virologia , Células Cultivadas , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Fibrose Cística/virologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Feminino , Humanos , Imunidade Inata/imunologia , Interferons/imunologia , Masculino , Estresse Oxidativo , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Adulto JovemRESUMO
Rhinovirus (RV), a single-stranded RNA picornavirus, is the most frequent cause of asthma exacerbations. We previously demonstrated in human bronchial epithelial cells that melanoma differentiation-associated gene (MDA)-5 and the adaptor protein for Toll-like receptor (TLR)-3 are each required for maximal RV1B-induced interferon (IFN) responses. However, in vivo, the overall airway response to viral infection likely represents a coordinated response integrating both antiviral and pro-inflammatory pathways. We examined the airway responses of MDA5- and TLR3-deficient mice to infection with RV1B, a minor group virus which replicates in mouse lungs. MDA5 null mice showed a delayed type I IFN and attenuated type III IFN response to RV1B infection, leading to a transient increase in viral titer. TLR3 null mice showed normal IFN responses and unchanged viral titers. Further, RV-infected MDA5 and TLR3 null mice showed reduced lung inflammatory responses and reduced airways responsiveness. Finally, RV-infected MDA5 null mice with allergic airways disease showed lower viral titers despite deficient IFN responses, and allergic MDA5 and TLR3 null mice each showed decreased RV-induced airway inflammatory and contractile responses. These results suggest that, in the context of RV infection, binding of viral dsRNA to MDA5 and TLR3 initiates pro-inflammatory signaling pathways leading to airways inflammation and hyperresponsiveness.
Assuntos
Hiper-Reatividade Brônquica/fisiopatologia , Hiper-Reatividade Brônquica/virologia , RNA Helicases DEAD-box/fisiologia , Inflamação/fisiopatologia , Inflamação/virologia , Rhinovirus/fisiologia , Transdução de Sinais/fisiologia , Receptor 3 Toll-Like/fisiologia , Animais , Hiper-Reatividade Brônquica/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Helicase IFIH1 Induzida por Interferon , Interferons/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Pulmão/virologia , Pneumopatias/metabolismo , Pneumopatias/fisiopatologia , Pneumopatias/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Picornaviridae/metabolismo , Infecções por Picornaviridae/fisiopatologia , Infecções por Picornaviridae/virologia , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Rhinovirus/isolamento & purificaçãoRESUMO
Previously, we showed that rhinovirus (RV), which is responsible for the majority of common colds, disrupts airway epithelial barrier function, as evidenced by reduced transepithelial resistance (R(T)), dissociation of zona occludins 1 (ZO-1) from the tight junction complex, and bacterial transmigration across polarized cells. We also showed that RV replication is required for barrier function disruption. However, the underlying biochemical mechanisms are not known. In the present study, we found that a double-stranded RNA (dsRNA) mimetic, poly(I:C), induced tight junction breakdown and facilitated bacterial transmigration across polarized airway epithelial cells, similar to the case with RV. We also found that RV and poly(I:C) each stimulated Rac1 activation, reactive oxygen species (ROS) generation, and Rac1-dependent NADPH oxidase 1 (NOX1) activity. Inhibitors of Rac1 (NSC23766), NOX (diphenylene iodonium), and NOX1 (small interfering RNA [siRNA]) each blocked the disruptive effects of RV and poly(I:C) on R(T), as well as the dissociation of ZO-1 and occludin from the tight junction complex. Finally, we found that Toll-like receptor 3 (TLR3) is not required for either poly(I:C)- or RV-induced reductions in R(T). Based on these results, we concluded that Rac1-dependent NOX1 activity is required for RV- or poly(I:C)-induced ROS generation, which in turn disrupts the barrier function of polarized airway epithelia. Furthermore, these data suggest that dsRNA generated during RV replication is sufficient to disrupt barrier function.
Assuntos
Brônquios/metabolismo , Brônquios/patologia , Permeabilidade da Membrana Celular/fisiologia , Células Epiteliais/metabolismo , NADPH Oxidases/metabolismo , Rhinovirus/patogenicidade , Brônquios/virologia , Linhagem Celular Transformada , Permeabilidade da Membrana Celular/efeitos dos fármacos , Polaridade Celular , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Haemophilus influenzae/fisiologia , Células HeLa , Humanos , NADPH Oxidases/farmacologia , Replicação Viral , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismoRESUMO
BACKGROUND: Intermittent viral exacerbations in patients with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa (PA) infection are associated with increased bacterial load. A few clinical studies suggest that rhinoviruses (RV) are associated with the majority of viral-related exacerbations in CF and require prolonged intravenous antibiotic treatment. These observations imply that acute RV infection may increase lower respiratory symptoms by increasing planktonic bacterial load. However, the underlying mechanisms are not known. METHODS: Primary CF airway epithelial cells differentiated into mucociliary phenotype were infected with mucoid PA (MPA) followed by RV and examined for bacterial density, biofilm mass, levels of chemokines and hydrogen peroxide (H2O2). The need for dual oxidase 2, a component of NADPH oxidase, in RV-induced generation of H2O2 in CF cells was assessed using gene-specific siRNA. RESULTS: Superinfection with RV increased chemokine responses in CF mucociliary-differentiated airway epithelial cells with pre-existing MPA infection in the form of biofilm. This was associated with the presence of planktonic bacteria at both the apical and basolateral epithelial cell surfaces. Further, RV-induced generation of H2O2 via dual oxidase 2 in CF cells was sufficient for dispersal of planktonic bacteria from the biofilm. Inhibition of NADPH oxidase reduced bacterial transmigration across mucociliary-differentiated CF cells and the interleukin-8 response in MPA- and RV-infected cells. CONCLUSION: This study shows that acute infection with RV liberates planktonic bacteria from biofilm. Planktonic bacteria, which are more proinflammatory than their biofilm counterparts, stimulate increased chemokine responses in CF airway epithelial cells which, in turn, may contribute to the pathogenesis of CF exacerbations.
Assuntos
Biofilmes , Quimiocinas/biossíntese , Fibrose Cística/microbiologia , Infecções por Picornaviridae/complicações , Pseudomonas aeruginosa/fisiologia , Diferenciação Celular , Células Cultivadas , Fibrose Cística/imunologia , Fibrose Cística/virologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Humanos , Peróxido de Hidrogênio/metabolismo , Interleucina-8/biossíntese , Microscopia Eletrônica de Varredura , Infecções por Pseudomonas/complicações , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia , Mucosa Respiratória/ultraestrutura , Mucosa Respiratória/virologia , Rhinovirus/isolamento & purificação , Superinfecção/complicações , Carga ViralRESUMO
Burkholderia cenocepacia is an opportunistic respiratory pathogen of individuals with cystic fibrosis (CF). Some strains of B. cenocepacia are highly transmissible and resistant to almost all antibiotics. Approximately one-third of B. cenocepacia infected CF patients go on to develop fatal "cepacia syndrome." During the last two decades, substantial progress has been made with regards to evasion of host innate defense mechanisms by B. cenocepacia. Almost all strains of B. cenocepacia have the capacity to survive and replicate intracellularly in both airway epithelial cells and macrophages, which are primary sentinels of the lung and play a pivotal role in clearance of infecting bacteria. Those strains of B. cenocepacia, which express both cable pili and the associated 22 kDa adhesin are also capable of transmigrating across airway epithelium and persist in mouse models of infection. In this review, we will discuss how this type of interaction between B. cenocepacia and host may lead to persistence of bacteria as well as lung inflammation in CF patients.
Assuntos
Infecções por Burkholderia/etiologia , Burkholderia cenocepacia/patogenicidade , Animais , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Citocinas/biossíntese , Modelos Animais de Doenças , Endocitose , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Pulmão/microbiologia , Camundongos , Infecções Oportunistas/etiologia , Mucosa Respiratória/microbiologia , Infecções Respiratórias/etiologia , Receptores Toll-Like/metabolismoRESUMO
Human rhinovirus is responsible for the majority of virus-induced asthma exacerbations. To determine the immunologic mechanisms underlying rhinovirus (RV)-induced asthma exacerbations, we combined mouse models of allergic airways disease and human rhinovirus infection. We inoculated OVA-sensitized and challenged BALB/c mice with rhinovirus serotype 1B, a minor group strain capable of infecting mouse cells. Compared with sham-infected, OVA-treated mice, virus-infected mice showed increased lung infiltration with neutrophils, eosinophils and macrophages, airway cholinergic hyperresponsiveness, and increased lung expression of cytokines including eotaxin-1/CCL11, IL-4, IL-13, and IFN-gamma. Administration of anti-eotaxin-1 attenuated rhinovirus-induced airway eosinophilia and responsiveness. Immunohistochemical analysis showed eotaxin-1 in the lung macrophages of virus-infected, OVA-treated mice, and confocal fluorescence microscopy revealed colocalization of rhinovirus, eotaxin-1, and IL-4 in CD68-positive cells. RV inoculation of lung macrophages from OVA-treated, but not PBS-treated, mice induced expression of eotaxin-1, IL-4, and IL-13 ex vivo. Macrophages from OVA-treated mice showed increased expression of arginase-1, Ym-1, Mgl-2, and IL-10, indicating a shift in macrophage activation status. Depletion of macrophages from OVA-sensitized and -challenged mice reduced eosinophilic inflammation and airways responsiveness following RV infection. We conclude that augmented airway eosinophilic inflammation and hyperresponsiveness in RV-infected mice with allergic airways disease is directed in part by eotaxin-1. Airway macrophages from mice with allergic airways disease demonstrate a change in activation state characterized in part by altered eotaxin and IL-4 production in response to RV infection. These data provide a new paradigm to explain RV-induced asthma exacerbations.
Assuntos
Quimiocina CCL11/imunologia , Macrófagos Alveolares/imunologia , Ovalbumina/imunologia , Infecções por Picornaviridae/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/metabolismo , Quimiocina CCL11/genética , Quimiocina CCL11/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Eosinófilos/imunologia , Eosinófilos/metabolismo , Eosinófilos/patologia , Células HeLa , Humanos , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Infecções por Picornaviridae/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhinovirus/imunologiaRESUMO
Pseudomonas aeruginosa, a major respiratory pathogen in cystic fibrosis (CF) patients, facilitates infection by other opportunistic pathogens. Burkholderia cenocepacia, which normally infects adolescent patients, encounters alginate elaborated by mucoid P. aeruginosa. To determine whether P. aeruginosa alginate facilitates B. cenocepacia infection in mice, cystic fibrosis transmembrane conductance regulator knockout mice were infected with B. cenocepacia strain BC7 suspended in either phosphate-buffered saline (BC7/PBS) or P. aeruginosa alginate (BC7/alginate), and the pulmonary bacterial load and inflammation were monitored. Mice infected with BC7/PBS cleared all of the bacteria within 3 days, and inflammation was resolved by day 5. In contrast, mice infected with BC7/alginate showed persistence of bacteria and increased cytokine levels for up to 7 days. Histological examination of the lungs indicated that there was moderate to severe inflammation and pneumonic consolidation in isolated areas at 5 and 7 days postinfection in the BC7/alginate group. Further, alginate decreased phagocytosis of B. cenocepacia by professional phagocytes both in vivo and in vitro. P. aeruginosa alginate also reduced the proinflammatory responses of CF airway epithelial cells and alveolar macrophages to B. cenocepacia infection. The observed effects are specific to P. aeruginosa alginate, because enzymatically degraded alginate or other polyuronic acids did not facilitate bacterial persistence. These observations suggest that P. aeruginosa alginate may facilitate B. cenocepacia infection by interfering with host innate defense mechanisms.
Assuntos
Alginatos/metabolismo , Infecções por Burkholderia/microbiologia , Burkholderia/crescimento & desenvolvimento , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Fibrose Cística/complicações , Pseudomonas aeruginosa/metabolismo , Animais , Contagem de Colônia Microbiana , Fibrose Cística/microbiologia , Citocinas/análise , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Histocitoquímica , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroscopiaRESUMO
RATIONALE: Infection with rhinovirus (RV) triggers exacerbations of asthma and chronic obstructive lung disease. OBJECTIVES: We sought to develop a mouse model of RV employing RV1B, a minor group serotype that binds to the low-density lipoprotein receptor. METHODS: C57BL/6 mice were inoculated intranasally with RV1B, replication-deficient ultraviolet (UV)-irradiated RV1B, or RV39, a major group virus. MEASUREMENTS AND MAIN RESULTS: Viral RNA was present in the lungs of RV1B-treated mice, but not in those exposed to UV-irradiated RV1B or RV39. Lung homogenates of RV-treated mice contained infectious RV 4 days after inoculation. RV1B exposure induced neutrophilic and lymphocytic airway inflammation, as well as increased lung expression of KC, macrophage-inflammatory protein-2, and IFN-alpha and IFN-beta. RV1B-exposed mice showed airway hyperresponsiveness 1 and 4 days after inoculation. UV-irradiated RV1B induced modest neutrophilic airway inflammation and hyperresponsiveness 1 day after exposure. Both RV1B and UV-irradiated RV1B, but not RV39, increased lung phosphorylation of Akt. Confocal immunofluorescence showed colocalization of RV1B and phospho-Akt in the airway epithelium. Finally, pretreatment with the phosphatidylinositol 3-kinase inhibitor LY294002 attenuated chemokine production and neutrophil infiltration. CONCLUSIONS: We conclude that RV1B induces airway inflammation in vivo. Evidence is presented that viral replication occurs in vivo and is required for maximal responses. On the other hand, viral replication was not required for a subset of RV-induced responses, including neutrophilic inflammation, airway hyperresponsiveness, and Akt phosphorylation. Finally, phosphatidylinositol 3-kinase/Akt signaling is required for maximal RV1B-induced airway neutrophilic inflammation, likely via its essential role in virus internalization.