Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 521(2): 527-532, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31677794

RESUMO

To enable large-scale screening of signaling molecules and drugs that regulate cellular contractility-associated mechanotransduction, we previously modified, particularly in terms of the capability of efficiently collecting big data, conventional methodologies using wrinkled substrates to determine the cellular contractility. Here, we present a new system to perform the wrinkle-based cell force assay in a multi-well plate format conformed to standardized geometric configurations and compatible with available technologies such as automated plate readers. With this highly improved throughput in terms of hardware as well as software using a deep learning-based technology, we evaluated the effect of treating cells with various types of pharmacological inhibitors on the cellular contractility. We found opposite responses of cells to the inhibitors between the contractility and collective migration activities. While similar inverse relationships between the contractility and migration have been reported in separate studies, our results here with the high-throughput screening system more broadly generalized these observations.


Assuntos
Fenômenos Biomecânicos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Mecanotransdução Celular , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Descoberta de Drogas/métodos , Humanos , Análise Serial de Tecidos
2.
Sci Rep ; 5: 10786, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26035687

RESUMO

Terahertz (THz) dual comb spectroscopy (DCS) is a promising method for high-accuracy, high-resolution, broadband THz spectroscopy because the mode-resolved THz comb spectrum includes both broadband THz radiation and narrow-line CW-THz radiation characteristics. In addition, all frequency modes of a THz comb can be phase-locked to a microwave frequency standard, providing excellent traceability. However, the need for stabilization of dual femtosecond lasers has often hindered its wide use. To overcome this limitation, here we have demonstrated adaptive-sampling THz-DCS, allowing the use of free-running femtosecond lasers. To correct the fluctuation of the time and frequency scales caused by the laser timing jitter, an adaptive sampling clock is generated by dual THz-comb-referenced spectrum analysers and is used for a timing clock signal in a data acquisition board. The results not only indicated the successful implementation of THz-DCS with free-running lasers but also showed that this configuration outperforms standard THz-DCS with stabilized lasers due to the slight jitter remained in the stabilized lasers.

3.
Sci Rep ; 4: 3816, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24448604

RESUMO

Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10(-7) in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

4.
Opt Express ; 20(14): 15071-8, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22772203

RESUMO

The spectral resolution and accuracy of asynchronous-optical-sampling terahertz time-domain spectroscopy (ASOPS-THz-TDS) were evaluated by examining low-pressure gas-phase samples. Use of dual 56-MHz, erbium (Er)-doped, mode-locked femtosecond fiber lasers enhanced the spectral resolution to as low as 50.5 MHz and the spectral accuracy to as low as 6.2 × 10(-6). The results indicate that ASOPS-THz-TDS has the potential to achieve high spectral resolution, high spectral accuracy, and wide spectral coverage at the same time. ASOPS-THz-TDS will open a new door to gas-phase spectroscopy of multiple chemical species in the field of atmospheric gas analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA