Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896131

RESUMO

Nanoparticles have numerous applications as drug carriers in drug delivery. The aim of the study was to produce tamoxifen nanoparticles with a defined size and higher encapsulation for efficient tissue uptake with controlled drug release. The quality by design approach was utilized to produce tamoxifen-loaded Eudragit nanoparticles by identifying the significant process variables using the nanoprecipitation method. The process variables (amount of drug, polymer, and surfactant) were altered to analyze the influence on particle size (PS), % encapsulation efficiency (EE). The results showed that the drug and polymer individually as well as collectively have an impact on PS, while the surfactant has no impact on the PS. The %EE was influenced by the surfactant individually and in interaction with the drug. The linear regression model was endorsed to fit the data showing high R2 values (PS, 0.9146, %EE, 0.9070) and low p values (PS, 0.0004, EE, 0.0005). The PS and EE were confirmed to be 178 nm and 90%, respectively. The nanoparticles were of spherical shape, as confirmed by SEM and TEM. The FTIR confirmed the absence of any incompatibility among the ingredients. The TGA confirmed that the NPs were thermally stable. The in vitro release predicted that the drug release followed Higuchi model.

2.
Saudi Pharm J ; 31(9): 101697, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37559864

RESUMO

The aim of this study is to formulate polymeric paclitaxel nanoparticles with various stabilizers to improve solubility, enhance stability, maximize therapeutic efficacy and minimize detrimental toxicities of paclitaxel. In this study, trastuzumab-guided poly lactic-co-glycolic acid (PLGA)-loaded paclitaxel nanoparticles were formulated with pluronic F-127, polyvinyl alcohol (PVA), poloxamer 407, Tween-80, span 20, sodium dodecyl sulfate (SDS), and sodium lauryl sulfate (SLS) at different concentrations (0.5, 1, 1.5 and 2%) using the solvent evaporation method. The nanoparticles were evaluated for physicochemical characteristics and short and long-term stability. The optimum particle size (190 nm ± 12.42 to 350 nm ± 11.1), PDI (0.13 ± 0.02 to 0.2 ± 0.01), surface charge (-19.1mv ± 1.5 to -40.4mv ± 1.6), drug loading (2.43 to 9.5 %) and encapsulation efficiency (greater than 80 %) were obtained with these stabilizers while keeping the polymer concentration, temperature, probe size, amplitude and sonication time constant. The nanoformulations were stably stored at 4 °C. The nanoformulations of paclitaxel with pluronic F-127, polyvinyl alcohol (PVA), and poloxamer 407 were found to be more soluble, stable, uniform in physicochemical properties, and efficient in drug loading and encapsulation for improved therapeutic effects.

3.
Front Pharmacol ; 13: 855294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359855

RESUMO

The aim of the study was to design and formulate an antibody-mediated targeted, biodegradable polymeric drug delivery system releasing drug in a controlled manner to achieve a therapeutic goal for the effective treatment of breast cancer. Antibody-mediated paclitaxel-loaded PLGA polymeric nanoformulations were prepared by the solvent evaporation method using different experimental parameters and compatibility studies. The optimized formulations were selected for in vitro and in vivo evaluation and cytotoxicity studies. The in vitro drug release studies show a biphasic release pattern for the paclitaxel-loaded PLGA nanoparticles showing a burst release for 24 h followed by an extended release for 14 days; however, a more controlled and sustained release was observed for antibody-conjugated polymeric nanoparticles. The cytotoxicity of reference drug and paclitaxel-loaded PLGA nanoparticles with and without antibody was determined by performing MTT assay against MCF-7 cells. Rabbits were used as experimental animals for the assessment of various in vivo pharmacokinetic parameters of selected formulations. The pharmacokinetic parameters such as Cmax (1.18-1.33 folds), AUC0-t (39.38-46.55 folds), MRT (10.04-12.79 folds), t1/2 (3.06-4.6 folds), and Vd (6.96-8.38 folds) have been increased significantly while clearance (4.34-4.61 folds) has been decreased significantly for the selected nanoformulations as compared to commercially available paclitaxel formulation (Paclixil®). The surface conjugation of nanoparticles with trastuzumab resulted in an increase in in vitro cytotoxicity as compared to plain nanoformulations and commercially available conventional brand (Paclixil®). The developed PLGA-paclitaxel nanoformulations conjugated with trastuzumab have the desired physiochemical characteristics, surface morphology, sustained release kinetics, and enhanced targeting.

4.
Iran J Pharm Res ; 20(3): 592-608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34904011

RESUMO

Improving the bioavailability of a drug at the ocular surface presents a profound challenge. Due to ocular physiological barriers, conventional eye drops exhibit poor bioavailability of drugs. Sustained-release nanoparticles may improve the residence time and hence increase absorption of the drug from the corneal surface. The current study focuses on the development of a nanoparticle-based system for the ophthalmic sustained delivery of moxifloxacin, to enhance ocular retention and bioavailability of the drug. PLGA was used as the matrix-forming polymer in the nanoparticle formulation. Nanoparticles were manufactured using a double emulsion (w/o/w) solvent evaporation technique. The formulation was optimized based on physicochemical properties, including size, polydispersity index, and stability. Nanoparticles were also evaluated for in-vitro drug release and pharmacokinetic evaluation in a rabbit model. The optimized formulation exhibited a relatively high initial release rate for six hours followed by sustained release of a drug via diffusion. The in-vivo ocular tolerance studies confirmed that moxifloxacin-loaded PLGA nanoparticles were non-irritating to the eye. The pharmacokinetic studies revealed that the nanoparticles provided a high Cmax, AUC, MRT, and low clearance rate when compared to commercial eye drops. It can be concluded that such PLGA nanoparticles offer the potential for improved bioavailability of moxifloxacin HCl.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA