Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 29(9): 2862-2874.e9, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31775051

RESUMO

Intracellular accumulation of α-synuclein (α-syn) and formation of Lewy bodies are neuropathological characteristics of Parkinson's disease (PD) and related α-synucleinopathies. Oligomerization and spreading of α-syn from neuron to neuron have been suggested as key events contributing to the progression of PD. To directly visualize and characterize α-syn oligomerization and spreading in vivo, we generated two independent conditional transgenic mouse models based on α-syn protein complementation assays using neuron-specifically expressed split Gaussia luciferase or split Venus yellow fluorescent protein (YFP). These transgenic mice allow direct assessment of the quantity and subcellular distribution of α-syn oligomers in vivo. Using these mouse models, we demonstrate an age-dependent accumulation of a specific subtype of α-syn oligomers. We provide in vivo evidence that, although α-syn is found throughout neurons, α-syn oligomerization takes place at the presynapse. Furthermore, our mouse models provide strong evidence for a transsynaptic cell-to-cell transfer of de novo generated α-syn oligomers in vivo.


Assuntos
Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
2.
Elife ; 62017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28653619

RESUMO

Unlike other human biological fluids, semen contains multiple types of amyloid fibrils in the absence of disease. These fibrils enhance HIV infection by promoting viral fusion to cellular targets, but their natural function remained unknown. The similarities shared between HIV fusion to host cell and sperm fusion to oocyte led us to examine whether these fibrils promote fertilization. Surprisingly, the fibrils inhibited fertilization by immobilizing sperm. Interestingly, however, this immobilization facilitated uptake and clearance of sperm by macrophages, which are known to infiltrate the female reproductive tract (FRT) following semen exposure. In the presence of semen fibrils, damaged and apoptotic sperm were more rapidly phagocytosed than healthy ones, suggesting that deposition of semen fibrils in the lower FRT facilitates clearance of poor-quality sperm. Our findings suggest that amyloid fibrils in semen may play a role in reproduction by participating in sperm selection and facilitating the rapid removal of sperm antigens.


Assuntos
Amiloide/metabolismo , Adesão Celular , Sêmen/química , Sêmen/citologia , Espermatozoides/fisiologia , Humanos , Macrófagos/fisiologia , Masculino , Fagocitose
3.
Stem Cell Reports ; 5(6): 1155-1170, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26651606

RESUMO

Pluripotency represents a cell state comprising a fine-tuned pattern of transcription factor activity required for embryonic stem cell (ESC) self-renewal. TBX3 is the earliest expressed member of the T-box transcription factor family and is involved in maintenance and induction of pluripotency. Hence, TBX3 is believed to be a key member of the pluripotency circuitry, with loss of TBX3 coinciding with loss of pluripotency. We report a dynamic expression of TBX3 in vitro and in vivo using genetic reporter tools tracking TBX3 expression in mouse ESCs (mESCs). Low TBX3 levels are associated with reduced pluripotency, resembling the more mature epiblast. Notably, TBX3-low cells maintain the intrinsic capability to switch to a TBX3-high state and vice versa. Additionally, we show TBX3 to be dispensable for induction and maintenance of naive pluripotency as well as for germ cell development. These data highlight novel facets of TBX3 action in mESCs.


Assuntos
Células-Tronco Embrionárias Murinas/citologia , Proteínas com Domínio T/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Reprogramação Celular , Deleção de Genes , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas com Domínio T/análise , Proteínas com Domínio T/genética
4.
Blood ; 107(6): 2493-500, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16304050

RESUMO

Many B-lineage-specific genes are down-regulated in Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL). We investigated the involvement of epigenetic modifications in gene silencing in cHL cell lines and in microdissected primary HRS cells. We assessed the expression and methylation status of CD19, CD20, CD79B, SYK, PU.1, BOB.1/OBF.1, BCMA, and LCK, all of which are typically down-regulated in cHL. We could reactivate gene expression in cHL cell lines with the DNA demethylating agent 5-aza-deoxycytidine (5-aza-dC). Using methylation-specific polymerase chain reaction (MSP), bisulfite genomic sequencing, and digestion with methylation-sensitive endonuclease followed by polymerase chain reaction (PCR), we determined the methylation status of promoter regions of PU.1, BOB.1/OBF.1, CD19, SYK, and CD79B. Down-regulation of transcription typically correlated with hypermethylation. Using bisulfite genomic sequencing we found that in microdissected HRS cells of primary cHL SYK, BOB.1/OBF.1, and CD79B promoters were also hypermethylated. Ectopic expression of both Oct2 and PU.1 in a cHL cell line potentiated endogenous PU.1 and SYK expression after 5-aza-dC treatment. These observations indicate that silencing of the B-cell-specific genes in cHL may be the consequence of a compromised regulatory network where down-regulation of a few master transcription factors results in silencing of numerous genes.


Assuntos
Linfócitos B/patologia , Epigênese Genética , Inativação Gênica , Doença de Hodgkin/genética , Doença de Hodgkin/patologia , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Metilação de DNA , Decitabina , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Células de Reed-Sternberg , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA