Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cureus ; 16(2): e54213, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38496187

RESUMO

Mycosis fungoides (MF) is the most common primary cutaneous T-cell lymphoma with a usually indolent course. Early detection is crucial for effective intervention. We present a case of a 40-year-old male with MF exhibiting blistering as a rare precursor symptom. Despite initial treatment for eczema, the condition worsened over 10 months, leading to erythema, edema, and enlarged lymph nodes. Laboratory and imaging findings confirmed the diagnosis of MF. The patient responded partially to cyclophosphamide/doxorubicin/prednisone in combination with brentuximab vedotin (A-CHP) therapy. This case highlights the significance of recognizing blistering as a prodromal symptom for early detection and management of MF.

3.
Cureus ; 15(11): e49453, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38152801

RESUMO

Langerhans cell histiocytosis (LCH) is a clonal proliferative disease of immature Langerhans cells that expand in various organs, leading to organ and tissue dysfunction. Although LCH is most commonly seen in children under the age of three, a small number of cases of congenital LCH have been described. With a review of the literature on congenital LCH with lung and skin lesions, we present a case of congenital LCH with involvement of skin and lung, which was effectively treated with chemotherapy without recurrence for 3 years during the observational period. In addition, we summarized previously published case studies of congenital LCH with skin and lung involvement.

4.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071562

RESUMO

The skin is the outermost layer of the body and is exposed to many environmental stimuli, which cause various inflammatory immune responses in the skin. Among them, fungi are common microorganisms that colonize the skin and cause cutaneous fungal diseases such as candidiasis and dermatophytosis. The skin exerts inflammatory responses to eliminate these fungi through the cooperation of skin-component immune cells. IL-17 producing cells are representative immune cells that play a vital role in anti-fungal action in the skin by producing antimicrobial peptides and facilitating neutrophil infiltration. However, the actual impact of IL-17-producing cells in cutaneous fungal infections remains unclear. In this review, we focused on the role of IL-17-producing cells in a series of cutaneous fungal infections, the characteristics of skin infectious fungi, and the recognition of cell components that drive cutaneous immune cells.


Assuntos
Candidíase/imunologia , Fungos/imunologia , Interleucina-17/imunologia , Pele/imunologia , Células Th17/imunologia , Tinha/imunologia , Animais , Candidíase/microbiologia , Fungos/fisiologia , Humanos , Interleucina-17/metabolismo , Infiltração de Neutrófilos/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pele/microbiologia , Células Th17/metabolismo , Tinha/microbiologia
5.
Front Plant Sci ; 11: 585774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072156

RESUMO

The major cell wall pectic glycan homogalacturonan (HG) is crucial for plant growth, development, and reproduction. HG synthesis occurs in the Golgi and is catalyzed by members of the galacturonosyltransferase (GAUT) family with GAUT1 being the archetypal and best studied family member. In Arabidopsis suspension culture cells and tobacco leaves, the Golgi localization of Arabidopsis GAUT1 has been shown to require protein-protein interactions with its homolog GAUT7. Here we show that in pollen tubes GAUT5 and GAUT6, homologs of GAUT7, also target GAUT1 to the Golgi apparatus. Pollen tube germination and elongation in double homozygous knock-out mutants (gaut5 gaut6, gaut5 gaut7, and gaut6 gaut7) are moderately impaired, whereas gaut5 -/- gaut6 -/- gaut7 +/- triple mutant is severely impaired and male infertile. Amounts and distributions of methylesterified HG in the pollen tube tip were severely distorted in the double and heterozygous triple mutants. A chimeric protein comprising GAUT1 and a non-cleavable membrane anchor domain was able to partially restore pollen tube germination and elongation and to reverse male sterility in the triple mutant. These results indicate that GAUT5, GAUT6, and GAUT7 are required for synthesis of native HG in growing pollen tubes and have critical roles in pollen tube growth and male fertility in Arabidopsis.

6.
PeerJ ; 7: e7529, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523505

RESUMO

Synthetic metabolism allows new metabolic capabilities to be introduced into strains for biotechnology applications. Such engineered metabolic pathways are unlikely to function optimally as initially designed and native metabolism may not efficiently support the introduced pathway without further intervention. To develop our understanding of optimal metabolic engineering strategies, a two-enzyme ethanol pathway consisting of pyruvate decarboxylase and acetaldehyde reductase was introduced into Synechocystis sp. PCC 6803. We characteriseda new set of ribosome binding site sequences in Synechocystis sp. PCC 6803 providing a range of translation strengths for different genes under test. The effect of ribosome-bindingsite sequence, operon design and modifications to native metabolism on pathway flux was analysed by HPLC. The accumulation of all introduced proteins was also quantified using selected reaction monitoring mass spectrometry. Pathway productivity was more strongly dependent on the accumulation of pyruvate decarboxylase than acetaldehyde reductase. In fact, abolishment of reductase over-expression resulted in the greatest ethanol productivity, most likely because strains harbouringsingle-gene constructs accumulated more pyruvate decarboxylase than strains carrying any of the multi-gene constructs. Overall, several lessons were learned. Firstly, the expression level of the first gene in anyoperon influenced the expression level of subsequent genes, demonstrating that translational coupling can also occur in cyanobacteria. Longer operons resulted in lower protein abundance for proximally-encoded cistrons. And, implementation of metabolic engineering strategies that have previously been shown to enhance the growth or yield of pyruvate dependent products, through co-expression with pyruvate kinase and/or fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase, indicated that other factors had greater control over growth and metabolic flux under the tested conditions.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30873405

RESUMO

Microalgae offer a promising biological platform for sustainable biomanufacturing of a wide range of chemicals, pharmaceuticals, and fuels. The model microalga Chlamydomonas reinhardtii is thus far the most versatile algal chassis for bioengineering and can grow using atmospheric CO2 and organic carbons (e.g., acetate and pure cellulose). Ability to utilize renewable feedstock like lignocellulosic biomass as a carbon source could significantly accelerate microalgae-based productions, but this is yet to be demonstrated. We observed that C. reinhardtii was not able to heterotrophically grow using wheat straw, a common type of lignocellulosic biomass, likely due to the recalcitrant nature of the biomass. When the biomass was pretreated with alkaline, C. reinhardtii was able to grow using acetate that was released from the biomass. To establish an eco-friendly and self-sustained growth system, we engineered C. reinhardtii to secrete a fungal acetylxylan esterase (AXE) for hydrolysis of acetylesters in the lignocellulosic biomass. Two transgenic strains (CrAXE03 and CrAXE23) secreting an active AXE into culture media were isolated. Incubation of CrAXE03 with wheat straw resulted in an eight-fold increase in the algal cell counts with a concomitant decrease of biomass acetylester contents by 96%. The transgenic lines showed minor growth defects compared to the parental strain, indicating that secretion of the AXE protein imposes limited metabolic burden. The results presented here would open new opportunities for applying low-cost renewable feedstock, available in large amounts as agricultural and manufacturing by-products, for microalgal cultivation. Furthermore, acetylesters and acetate released from them, are well-known inhibitors in lignocellulosic biofuel productions; thus, direct application of the bioengineered microalga could be exploited for improving renewable biofuel productions.

8.
Plant J ; 96(4): 772-785, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30118566

RESUMO

O-Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O-acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O-acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock-out mutants of Arabidopsis, tbl10-1 and tbl10-2, were isolated and shown to exhibit reduced levels of wall-bound acetyl esters, equivalent of ~50% of the wild-type level in pectin-enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan-I (RG-I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O-acetylation of RG-I, possibly as an acetyltransferase, and suggest that O-acetylated RG-I plays a role in abiotic stress responses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Glucanos/metabolismo , Mananas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Polissacarídeos/metabolismo , Pseudomonas syringae/metabolismo , Transcriptoma , Xilanos/metabolismo
9.
Metab Eng ; 47: 170-183, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510212

RESUMO

Cyanobacteria fix atmospheric CO2 to biomass and through metabolic engineering can also act as photosynthetic factories for sustainable productions of fuels and chemicals. The Calvin Benson cycle is the primary pathway for CO2 fixation in cyanobacteria, algae and C3 plants. Previous studies have overexpressed the Calvin Benson cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and bifunctional sedoheptulose-1,7-bisphosphatase/fructose-1,6-bisphosphatase (hereafter BiBPase), in both plants and algae, although their impacts on cyanobacteria have not yet been rigorously studied. Here, we show that overexpression of BiBPase and RuBisCO have distinct impacts on carbon metabolism in the cyanobacterium Synechococcus sp. PCC 7002 through physiological, biochemical, and proteomic analyses. The former enhanced growth, cell size, and photosynthetic O2 evolution, and coordinately upregulated enzymes in the Calvin Benson cycle including RuBisCO and fructose-1,6-bisphosphate aldolase. At the same time it downregulated enzymes in respiratory carbon metabolism (glycolysis and the oxidative pentose phosphate pathway) including glucose-6-phosphate dehydrogenase (G6PDH). The content of glycogen was also significantly reduced while the soluble carbohydrate content increased. These results indicate that overexpression of BiBPase leads to global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002, promoting photosynthetic carbon fixation and carbon partitioning towards non-storage carbohydrates. In contrast, whilst overexpression of RuBisCO had no measurable impact on growth and photosynthetic O2 evolution, it led to coordinated increase in the abundance of proteins involved in pyruvate metabolism and fatty acid biosynthesis. Our results underpin that singular genetic modifications in the Calvin Benson cycle can have far broader cellular impact than previously expected. These features could be exploited to more efficiently direct carbons towards desired bioproducts.


Assuntos
Proteínas de Bactérias , Frutose-Bifosfatase , Monoéster Fosfórico Hidrolases , Fotossíntese , Ribulose-Bifosfato Carboxilase , Synechocystis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos/genética , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
10.
Bio Protoc ; 8(1): e2667, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34179225

RESUMO

Cyanobacteria are photosynthetic bacteria that thrive in diverse ecosystems and play major roles in the global carbon cycle. The abilities of cyanobacteria to fix atmospheric CO2 and to allocate the fixed carbons to chemicals and biofuels have attracted growing attentions as sustainable microbial cell factories. A better understanding of activities of enzymes involved in the central carbon metabolism might lead to increased product yields. Currently, cell-free lysates are widely used for the determination of intracellular enzyme activities. However, due to thick cell walls in cyanobacteria, lysis of cyanobacterial cells is inefficient and often laborious. The present protocol describes an easy and efficient method to permeabilize cyanobacterial cells, without lysing them, and direct usage of the permeabilized cells for the determination of metabolic enzyme activities in vivo.

12.
J Vis Exp ; (125)2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28745633

RESUMO

Cyanobacteria accumulate glycogen as a major intracellular carbon and energy storage during photosynthesis. Recent developments in research have highlighted complex mechanisms of glycogen metabolism, including the diel cycle of biosynthesis and catabolism, redox regulation, and the involvement of non-coding RNA. At the same time, efforts are being made to redirect carbon from glycogen to desirable products in genetically engineered cyanobacteria to enhance product yields. Several methods are used to determine the glycogen contents in cyanobacteria, with variable accuracies and technical complexities. Here, we provide a detailed protocol for the reliable determination of the glycogen content in cyanobacteria that can be performed in a standard life science laboratory. The protocol entails the selective precipitation of glycogen from the cell lysate and the enzymatic depolymerization of glycogen to generate glucose monomers, which are detected by a glucose oxidase-peroxidase (GOD-POD) enzyme coupled assay. The method has been applied to Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, two model cyanobacterial species that are widely used in metabolic engineering. Moreover, the method successfully showed differences in the glycogen contents between the wildtype and mutants defective in regulatory elements or glycogen biosynthetic genes.


Assuntos
Ensaios Enzimáticos/métodos , Glicogênio/metabolismo , Synechocystis/metabolismo , Glucose/análise , Glucose/metabolismo , Glucose Oxidase/metabolismo , Manitol/metabolismo , Peroxidase/metabolismo , Synechocystis/genética , Gravação em Vídeo
13.
Plant Biotechnol J ; 15(9): 1214-1224, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28207991

RESUMO

Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C-terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP)n , wherein n = 10 or 20]. The yields of the (SP)n -fused Venus were higher than Venus without the glycomodule by up to 12-fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus-(SP)n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP)n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Metaloproteases/metabolismo , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/metabolismo , Biotecnologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Meios de Cultura , Genes Reporter , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Metaloproteases/genética , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes de Fusão/genética
14.
Microb Cell Fact ; 15(1): 186, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27825349

RESUMO

BACKGROUND: Cyanobacteria are photosynthetic bacteria that thrive in diverse ecosystems and play major roles in the global carbon cycle. The abilities of cyanobacteria to fix atmospheric CO2 and to allocate the fixed carbons to chemicals and biofuels have attracted growing attentions as sustainable microbial cell factories. Better understanding of the activities of enzymes involved in the central carbon metabolism would lead to increasing product yields. Currently cell-free lysates are the most widely used method for determination of intracellular enzyme activities. However, due to thick cell walls, lysis of cyanobacterial cells is inefficient and often laborious. In some cases radioisotope-labeled substrates can be fed directly to intact cells; however, label-free assays are often favored due to safety and practical reasons. RESULTS: Here we show an easy and highly efficient method for permeabilization of the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803, and determination of two intracellular enzymes, ribulose-1,5-bisphosphate carboxylase/decarboxylase (Rubisco) and glucose-6-phosphate dehydrogenase (G6PDH), that play pivotal roles in the central carbon metabolism in cyanobacteria. Incubation of the cyanobacterial cells in the commercially available B-PER reagent for 10 min permeabilized the cells, as confirmed by the SYTOX Green staining. There was no significant change in the cell shape and no major loss of intracellular proteins was observed during the treatment. When used directly in the assays, the permeabilized cells exhibited the enzyme activities that are comparable or even higher than those detected for cell-free lysates. Moreover, the permeabilized cells could be stored at -20 °C without losing the enzyme activities. The permeabilization process and subsequent activity assays were successfully adapted to the 96-well plate system. CONCLUSIONS: An easy, efficient and scalable permeabilization protocol was established for cyanobacteria. The permeabilized cells can be directly applied for measurement of G6PDH and Rubisco activities without using radioisotopes and the protocol may be readily adapted to studies of other cyanobacterial species and other intracellular enzymes. The permeabilization and enzyme assays can be performed in 96-well plates in a high-throughput manner.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Synechococcus/enzimologia , Synechocystis/enzimologia , Permeabilidade da Membrana Celular , Permeabilidade
15.
Plant Cell Physiol ; 57(10): 2091-2103, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27440548

RESUMO

Carbohydrate metabolism is a tightly regulated process in photosynthetic organisms. In the cyanobacterium Synechocystis sp. PCC 6803, the photomixotrophic growth protein A (PmgA) is involved in the regulation of glucose and storage carbohydrate (i.e. glycogen) metabolism, while its biochemical activity and possible factors acting downstream of PmgA are unknown. Here, a genome-wide microarray analysis of a ΔpmgA strain identified the expression of 36 protein-coding genes and 42 non-coding transcripts as significantly altered. From these, the non-coding RNA Ncr0700 was identified as the transcript most strongly reduced in abundance. Ncr0700 is widely conserved among cyanobacteria. In Synechocystis its expression is inversely correlated with light intensity. Similarly to a ΔpmgA mutant, a Δncr0700 deletion strain showed an approximately 2-fold increase in glycogen content under photoautotrophic conditions and wild-type-like growth. Moreover, its growth was arrested by 38 h after a shift to photomixotrophic conditions. Ectopic expression of Ncr0700 in Δncr0700 and ΔpmgA restored the glycogen content and photomixotrophic growth to wild-type levels. These results indicate that Ncr0700 is required for photomixotrophic growth and the regulation of glycogen accumulation, and acts downstream of PmgA. Hence Ncr0700 is renamed here as PmgR1 for photomixotrophic growth RNA 1.


Assuntos
Glicogênio/metabolismo , Processos Fototróficos/genética , RNA não Traduzido/metabolismo , Synechocystis/crescimento & desenvolvimento , Synechocystis/genética , Sequência de Bases , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Genoma Bacteriano , Genótipo , Luz , Mutação/genética , Processos Fototróficos/efeitos da radiação , RNA não Traduzido/genética , Reprodutibilidade dos Testes , Alinhamento de Sequência , Synechocystis/efeitos da radiação , Transcrição Gênica/efeitos da radiação , Regulação para Cima/genética
19.
J Exp Bot ; 66(22): 6975-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26400987

RESUMO

Microalgae are a diverse group of single-cell photosynthetic organisms that include cyanobacteria and a wide range of eukaryotic algae. A number of microalgae contain high-value compounds such as oils, colorants, and polysaccharides, which are used by the food additive, oil, and cosmetic industries, among others. They offer the potential for rapid growth under photoautotrophic conditions, and they can grow in a wide range of habitats. More recently, the development of genetic tools means that a number of species can be transformed and hence used as cell factories for the production of high-value chemicals or recombinant proteins. In this article, we review exploitation use of microalgae with a special emphasis on genetic engineering approaches to develop cell factories, and the use of synthetic ecology approaches to maximize productivity. We discuss the success stories in these areas, the hurdles that need to be overcome, and the potential for expanding the industry in general.


Assuntos
Biotecnologia , Microalgas , Engenharia Genética , Microbiologia Industrial , Microalgas/genética
20.
Onco Targets Ther ; 8: 2045-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26273207

RESUMO

Nivolumab was developed as a monoclonal antibody against programmed death receptor-1, an immune checkpoint inhibitor which negatively regulates T-cell proliferation and activation. Intravenous administration of nivolumab was approved for the treatment of unresectable malignant melanoma in 2014 in Japan. When advanced melanoma patients were treated with nivolumab, median overall survival became longer. Overall survival rate was significantly better in nivolumab-treated melanoma patients than dacarbazine-treated melanoma patients. Nivolumab had an acceptable long-term tolerability profile, with 22% of patients experiencing grade 3 or 4 adverse events related to the drug. Therefore, nivolumab can become an alternative therapy for advanced malignant melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA