Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(23): 236403, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354414

RESUMO

The density of states (DOS) is fundamentally important for understanding physical processes in organic disordered semiconductors, yet hard to determine experimentally. We evaluated the DOS by considering recombination via tail states and using the temperature and open-circuit voltage (V_{oc}) dependence of the ideality factor. By performing Suns-V_{oc} measurements, we find that the energetic disorder increases deeper into the band gap, which is not expected for a Gaussian or exponential DOS. The linear dependence of the disorder on energy reveals the power-law DOS in organic solar cells.


Assuntos
Distribuição Normal , Temperatura
3.
Nat Commun ; 13(1): 3786, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778394

RESUMO

Stability is one of the most important challenges facing material research for organic solar cells (OSC) on their path to further commercialization. In the high-performance material system PM6:Y6 studied here, we investigate degradation mechanisms of inverted photovoltaic devices. We have identified two distinct degradation pathways: one requires the presence of both illumination and oxygen and features a short-circuit current reduction, the other one is induced thermally and marked by severe losses of open-circuit voltage and fill factor. We focus our investigation on the thermally accelerated degradation. Our findings show that bulk material properties and interfaces remain remarkably stable, however, aging-induced defect state formation in the active layer remains the primary cause of thermal degradation. The increased trap density leads to higher non-radiative recombination, which limits the open-circuit voltage and lowers the charge carrier mobility in the photoactive layer. Furthermore, we find the trap-induced transport resistance to be the major reason for the drop in fill factor. Our results suggest that device lifetimes could be significantly increased by marginally suppressing trap formation, leading to a bright future for OSC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA