Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 9: 57, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20630076

RESUMO

BACKGROUND: The flavin-dependent enzyme pyranose 2-oxidase (P2Ox) has gained increased attention during the last years because of a number of attractive applications for this enzyme. P2Ox is a unique biocatalyst with high potential for biotransformations of carbohydrates and in synthetic carbohydrate chemistry. Recently, it was shown that P2Ox is useful as bioelement in biofuel cells, replacing glucose oxidase (GOx), which traditionally is used in these applications. P2Ox offers several advantages over GOx for this application, e.g., its much broader substrate specificity. Because of this renewed interest in P2Ox, knowledge on novel pyranose oxidases isolated from organisms other than white-rot fungi, which represent the traditional source of this enzyme, is of importance, as these novel enzymes might differ in their biochemical and physical properties. RESULTS: We isolated and over-expressed the p2ox gene encoding P2Ox from the ectomycorrhizal fungus Lyophyllum shimeji. The p2ox cDNA was inserted into the bacterial expression vector pET21a(+) and successfully expressed in E. coli Rosetta 2. We obtained active, flavinylated recombinant P2Ox in yields of approximately 130 mg per L of medium. The enzyme was purified by a two-step procedure based on anion exchange chromatography and preparative native PAGE, yielding an apparently homogenous enzyme preparation with a specific activity of 1.92 U/mg (using glucose and air oxygen as the substrates). Recombinant P2Ox from L. shimeji was characterized in some detail with respect to its physical and catalytic properties, and compared to the well-characterised enzymes from Phanerochaete chrysosporium and Trametes multicolor. CONCLUSION: L. shimeji P2Ox shows properties that are comparable to those of P2Ox from white-rot fungal origin, and is in general characterised by lower K(m) and k(cat) values both for electron donor (sugar) as well as electron acceptor (ferrocenium ion, 1,4-benzoquinone, 2,6-dichloroindophenol). While L. shimeji P2Ox is the least thermostable of these three enzymes (melting temperature T(m) of 54.9 degrees C; half-life time of activity tau1/2 of 0.12 at 50 degrees C and pH 6.5), P. chrysosporium P2Ox showed remarkable thermostability with T(m) of 75.4 degrees C and tau1/2 of 96 h under identical conditions.


Assuntos
Agaricales/enzimologia , Desidrogenases de Carboidrato/química , Proteínas Fúngicas/química , Sequência de Aminoácidos , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Meia-Vida , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
2.
Bioresour Technol ; 100(23): 5566-73, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19595589

RESUMO

The interactions between two oxidoreductases coupled by an artificial redox mediator have been described quantitatively to increase both stability and productivity. In this cascade oxidation, pyranose 2-oxidase oxidizes several aldoses at the C-2 position to 2-ketoaldoses. A redox mediator is used as electron acceptor for pyranose 2-oxidase because it shows more favourable kinetics in comparison to oxygen. The reduced redox mediator is in turn re-oxidized by laccase, which uses oxygen as the terminal electron acceptor, reducing it fully to water. However, pyranose 2-oxidase is capable of using oxygen as an electron acceptor in a competing side reaction, leading to the formation of hydrogen peroxide, which is detrimental for both enzymes and seriously limits the operational stability of both enzymes. The experimental results showed full conversion of the aldose to the 2-ketoaldose and a good agreement with the simulations of the process.


Assuntos
Biotecnologia/métodos , Desidrogenases de Carboidrato/química , Lacase/química , Oxigênio/química , Adsorção , Benzoquinonas/química , Biocatálise , Biotransformação , Carvão Vegetal/química , Química/métodos , Cromatografia Líquida de Alta Pressão/métodos , Peróxido de Hidrogênio/química , Cinética , Modelos Químicos , Oxirredução
3.
Biotechnol J ; 4(4): 535-43, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19370721

RESUMO

D-Tagatose is a sweetener with low caloric and non-glycemic characteristics. It can be produced by an enzymatic oxidation of D-galactose specifically at C2 followed by chemical hydrogenation. Pyranose 2-oxidase (P2Ox) from Trametes multicolor catalyzes the oxidation of many aldopyranoses to their corresponding 2-keto derivatives. Since D-galactose is not the preferred substrate of P2Ox, semi-rational design was employed to improve the catalytic efficiency with this poor substrate. Saturation mutagenesis was applied on all positions in the active site of the enzyme, resulting in a library of mutants, which were screened for improved activity in a 96-well microtiter plate format. Mutants with higher activity than wild-type P2Ox were chosen for further kinetic investigations. Variant V546C was found to show a 2.5-fold increase of k(cat) with both D-glucose and D-galactose when oxygen was used as electron acceptor. Because of weak substrate binding, however, k(cat)/K(M) is lower for both sugar substrates compared to wild-type TmP2Ox. Furthermore, variants at position T169, i.e., T169S and T169N, showed an improvement of the catalytic characteristics of P2Ox with D-galactose. Batch conversion experiments of D-galactose to 2-keto-D-galactose were performed with wild-type TmP2O as well as with variants T169S, T169N, V546C and V546C/T169N to corroborate the kinetic properties determined by Michaelis-Menten kinetics.


Assuntos
Desidrogenases de Carboidrato/química , Mutagênese Sítio-Dirigida , Engenharia de Proteínas/métodos , Trametes/enzimologia , Sequência de Aminoácidos , Sítios de Ligação/genética , Biocatálise , Reatores Biológicos , Soluções Tampão , Desidrogenases de Carboidrato/análise , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Escherichia coli/genética , Galactose/genética , Galactose/metabolismo , Expressão Gênica , Vetores Genéticos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Modelos Teóricos , Dados de Sequência Molecular , Mutação/genética , Oxirredução , Fosfatos/metabolismo , Ligação Proteica/genética , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura , Trametes/genética
4.
Biotechnol J ; 4(4): 525-34, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19291706

RESUMO

In order to increase the thermal stability and the catalytic properties of pyranose oxidase (P2Ox) from Trametes multicolor toward its poor substrate D-galactose and the alternative electron acceptor 1,4-benzoquinone (1,4-BQ), we designed the triple-mutant T169G/E542K/V546C. Whereas the wild-type enzyme clearly favors D-glucose as its substrate over D-galactose [substrate selectivity (k(cat)/K(M))(Glc)/(k(cat)/K(M))(Gal) = 172], the variant oxidizes both sugars equally well [(k(cat)/K(M))(Glc)/(k(cat)/K(M))(Gal) = 0.69], which is of interest for food biotechnology. Furthermore, the variant showed lower K(M) values and approximately ten-fold higher k(cat) values for 1,4-BQ when D-galactose was used as the saturating sugar substrate, which makes this enzyme particularly attractive for use in biofuel cells and enzyme-based biosensors. In addition to the altered substrate specificity and reactivity, this mutant also shows significantly improved thermal stability. The half life time at 60 degrees C was approximately 10 h, compared to 7.6 min for the wild-type enzyme. We performed successfully small-scale bioreactor pilot conversion experiments of D-glucose/D-galactose mixtures at both 30 and 50 degrees C, showing the usefulness of this P2Ox variant in biocatalysis as well as the enhanced thermal stability of the enzyme. Moreover, we determined the crystal structure of the mutant in its unligated form at 1.55 A resolution. Modeling D-galactose in position for oxidation at C2 into the mutant active site shows that substituting Thr for Gly at position 169 favorably accommodates the axial C4 hydroxyl group that would otherwise clash with Thr169 in the wild-type.


Assuntos
Desidrogenases de Carboidrato/genética , Proteínas Fúngicas/genética , Mutação , Engenharia de Proteínas/métodos , Trametes/enzimologia , Substituição de Aminoácidos , Benzoquinonas/metabolismo , Sítios de Ligação/genética , Biocatálise , Biotecnologia/métodos , Desidrogenases de Carboidrato/análise , Desidrogenases de Carboidrato/metabolismo , Cristalização , Estabilidade Enzimática , Escherichia coli/genética , Proteínas Fúngicas/análise , Proteínas Fúngicas/metabolismo , Galactose/genética , Glucose/genética , Meia-Vida , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Ligação Proteica , Proteínas Recombinantes/análise , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/genética , Temperatura , Treonina/metabolismo , Trametes/genética
5.
FEBS J ; 276(3): 776-92, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19143837

RESUMO

The fungal homotetrameric flavoprotein pyranose 2-oxidase (P2Ox; EC 1.1.3.10) catalyses the oxidation of various sugars at position C2, while, concomitantly, electrons are transferred to oxygen as well as to alternative electron acceptors (e.g. oxidized ferrocenes). These properties make P2Ox an interesting enzyme for various biotechnological applications. Random mutagenesis has previously been used to identify variant E542K, which shows increased thermostability. In the present study, we selected position Leu537 for saturation mutagenesis, and identified variants L537G and L537W, which are characterized by a higher stability and improved catalytic properties. We report detailed studies on both thermodynamic and kinetic stability, as well as the kinetic properties of the mutational variants E542K, E542R, L537G and L537W, and the respective double mutants (L537G/E542K, L537G/E542R, L537W/E542K and L537W/E542R). The selected substitutions at positions Leu537 and Glu542 increase the melting temperature by approximately 10 and 14 degrees C, respectively, relative to the wild-type enzyme. Although both wild-type and single mutants showed first-order inactivation kinetics, thermal unfolding and inactivation was more complex for the double mutants, showing two distinct phases, as revealed by microcalorimetry and CD spectroscopy. Structural information on the variants does not provide a definitive answer with respect to the stabilizing effects or the alteration of the unfolding process. Distinct differences, however, are observed for the P2Ox Leu537 variants at the interfaces between the subunits, which results in tighter association.


Assuntos
Biocatálise , Desidrogenases de Carboidrato/metabolismo , Evolução Molecular Direcionada , Temperatura , Trametes/enzimologia , Desidrogenases de Carboidrato/química , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/isolamento & purificação , Dicroísmo Circular , Cristalografia por Raios X , Desenho de Fármacos , Estabilidade Enzimática , Expressão Gênica , Cinética , Modelos Moleculares , Mutação/genética , Desnaturação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Trametes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA