RESUMO
This work designed and prepared an organic-inorganic nanocomposite using layered double hydroxide (LDH) inorganic substrate and trimesic acid (TMA) as chelating agent. Subsequently, the synthesized organic-inorganic nanocomposite was assessed using multiple identification methods, including FTIR, EDX, XRD, TGA, and FESEM, and the outcomes demonstrated that the intended structure was successfully prepared. Also, in order to investigate the efficiency of the Mg-Al LDH-TMA nanocomposite as an efficient nano adsorbent, it was used for removal of indigo carmine (IC) and methylene blue (MB) from aqueous solutions. This synthetic nanocomposite showed a high adsorption capacity. The efficiency of the produced nanocomposite in the adsorption of selected dyes was investigated with the help of batch adsorption studies performed in a variety of experimental settings, including dye concentration, adsorbent dose, pH, adsorption temperature and contact time. Furthermore, the produced Mg-Al LDH-TMA nanocomposite exhibits strong stability and can be recycled and reused five times in a row, which is well consistent with the principles of green chemistry.