Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
One Health Outlook ; 5(1): 14, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37876014

RESUMO

BACKGROUND: Arthropod-borne flaviviruses like dengue virus (DENV) and yellow fever virus (YFV) are major human pathogens. In Latin America, YFV is maintained in sylvatic cycles involving non-human primates (NHP) and forest-dwelling mosquitos. YFV supposedly does not circulate north of Panama. METHODS: We conducted a serologic study for flaviviruses and other emerging viruses in NHP from southeastern Mexico. A total of thirty sera of black-handed spider monkeys (Ateles geoffroyi, n = 25), black howler monkeys (Alouatta pigra, n = 3), and mantled howler monkeys (Al. palliata, n = 2) sampled in 2012 and 2018 were screened by an indirect immunofluorescence assay (IFA) to detected IgG antibodies against DENV, YFV, Zika virus (ZIKV), West Nile virus (WNV), Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, Middle East respiratory syndrome coronavirus, and Zaire Ebola virus, and confirmed by plaque reduction neutralization tests (PRNT90) representing all mosquito-borne flavivirus serocomplexes circulating in the Americas. RESULTS: A total of 16 sera (53.3%; 95% CI, 34.3-71.7) showed IFA reactivity to at least one tested flavivirus with end-point titers ranging from 1:100 to 1:1000. No serum reacted with other viruses. Monotypic and high mean PRNT90 endpoint YFV titers of 1:246 were found in 3 black-handed spider monkey sera (10.0%; 95% CI, 2.1-26.5) sampled in 2018 in Tabasco, compared to all other flaviviruses tested. Monotypic endpoint PRNT90 titers of 1:28 for Ilheus virus and 1:22 for WNV in serum of black howler monkeys sampled in 2018 in Tabasco suggested additional flavivirus exposure. CONCLUSIONS: Our findings may suggest unnoticed YFV circulation. Intensification of YFV surveillance in NHP and vectors is warranted in Mexico and potentially other areas considered free of yellow fever.

2.
PLoS Negl Trop Dis ; 17(7): e0010439, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486923

RESUMO

Bats are important natural reservoir hosts of a diverse range of viruses that can be transmitted to humans and have been suggested to play an important role in the Zika virus (ZIKV) transmission cycle. However, the exact role of these animals as reservoirs for flaviviruses is still controversial. To further expand our understanding of the role of bats in the ZIKV transmission cycle in Latin America, we carried out an experimental infection in wild-caught Artibeus lituratus bats and sampled several free-living neotropical bats across three countries of the region. Experimental ZIKV infection was performed in wild-caught adult bats (4 females and 5 males). The most relevant findings were hemorrhages in the bladder, stomach and patagium. Significant histological findings included inflammatory infiltrate consisting of a predominance of neutrophils and lymphocytes, in addition to degeneration in the reproductive tract of males and females. This suggests that bat reproduction might be at some level affected by ZIKV. Leukopenia was also observed in some inoculated animals. Hemorrhages, genital alterations, and leukopenia are suggested to be caused by ZIKV; however, since these were wild-caught bats, we cannot exclude other agents. Detection of ZIKV by qPCR was observed at low concentrations in only two urine samples in two inoculated animals. All other animals and tissues tested were negative. Finally, no virus-neutralizing antibodies were found in any animal. To determine ZIKV infection in nature, the blood of a total of 2056 bats was sampled for ZIKV detection by qPCR. Most of the sampled individuals belonged to the genus Pteronotus sp. (23%), followed by the species Carollia sp. (17%), Anoura sp. (14%), and Molossus sp. (13.7%). No sample of any tested species was positive for ZIKV by qPCR. These results together suggest that bats are not efficient amplifiers or reservoirs of ZIKV and may not have an important role in ZIKV transmission dynamics.


Assuntos
Quirópteros , Infecção por Zika virus , Zika virus , Animais , Feminino , Masculino , Costa Rica/epidemiologia , Guiana Francesa/epidemiologia , Peru/epidemiologia , Zika virus/genética , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/veterinária , Infecção por Zika virus/diagnóstico
3.
PeerJ ; 10: e13606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811815

RESUMO

Sea urchins are a group of benthic invertebrates characterized by having rigid globose bodies, covered in spines, and have an innate immune system that has allowed them to survive in the environment and defend against many pathogens that affect them. They are consumed for their unique flavor, but also for possessing a rich source of bioactive compounds which make them a source for a wide array of medicinal properties. Thus, these may be used to discover and develop new drugs such as anti-bacterials, anti-carcinogenics and anti-virals. Precisely for those reasons, this revision is centered on the known biological activities in various sea urchin species. Recently, the potential pharmacological benefits of nine sea urchin species [Diadema antillarum (Philippi 1845), Echinometra mathaei (de Blainville), Evechinus chloroticus (Valenciennes), Mesocentrotus nudus (Agassiz, 1863), Paracentrotus lividus (Lamarck, 1816), Scaphechinus mirabilis (Agazzis, 1863), Stomopneustes variolaris (Lamarck, 1816), Tripneustes depressus (Agassiz, 1863), and Tripneustes ventricosus (Lamarck, 1816)] have been evaluated. Our work includes a comprehensive review of the anti-fungal, anti-parasitic, anti-inflammatory, hepatoprotective, anti-viral, anti-diabetic, anti-lipidemic, gastro-protective and anti-cardiotoxic effects. Furthermore, we revised the compounds responsible of these pharmacological effects. This work was intended for a broad readership in the fields of pharmacology, drugs and devices, marine biology and aquaculture, fisheries and fish science. Our results suggest that organic extracts, as well as pure compounds obtained from several parts of sea urchin bodies are effective in vitro and in vivo pharmacological models. As such, these properties manifest the potential use of sea urchins to develop emergent active ingredients.


Assuntos
Paracentrotus , Animais , Aquicultura , Pesqueiros , Peixes
4.
Transbound Emerg Dis ; 69(2): 195-203, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34606685

RESUMO

In humans, co-infection of hepatitis B and C viruses (HBV, HCV) is common and aggravates disease outcome. Infection-mediated disease aggravation is poorly understood, partly due to lack of suitable animal models. Carnivores are understudied for hepatitis virus homologues. We investigated Mexican carnivores (ringtails, Bassariscus astutus) for HBV and HCV homologues. Three out of eight animals were infected with a divergent HBV termed ringtail HBV (RtHBV) at high viral loads of 5 × 109 -1.4 × 1010 copies/ml serum. Two of the RtHBV-infected animals were co-infected with a divergent hepacivirus termed ringtail hepacivirus (RtHV) at 4 × 106 -7.5 × 107 copies/ml in strain-specific qRT-PCR assays. Immunofluorescence assays relying on HBV core and RtHV NS3/4a proteins indicated that none of the animals had detectable hepadnavirus core-specific antibodies, whereas one RtHV-infected animal had concomitant RtHV-specific antibodies at 1:800 end-point titre. RtHBV and RtHV complete genomes showed typical HBV and HCV structure and length. All RtHBV genomes were identical, whereas RtHV genomes showed four amino acid substitutions located predominantly in the E1/E2-encoding genomic regions. Both RtHBV (>28% genomic nucleotide sequence distance) and RtHV (>30% partial NS3/NS5B amino acid sequence distance) formed new species within their virus families. Evolutionary analyses showed that RtHBV grouped with HBV homologues from different laurasiatherian hosts (carnivores, bats, and ungulates), whereas RtHV grouped predominantly with rodent-borne viruses. Ancestral state reconstructions showed that RtHV, but not RtHBV, likely emerged via a non-recent host switch involving rodent-borne hepacivirus ancestors. Conserved hepatitis virus infection patterns in naturally infected ringtails indicate that carnivores may be promising animal models to understand HBV/HCV co-infection.


Assuntos
Coinfecção , Hepatite B , Animais , Coinfecção/veterinária , Hepacivirus/genética , Hepatite B/complicações , Hepatite B/epidemiologia , Hepatite B/veterinária , Vírus da Hepatite B/genética , Carga Viral/veterinária
5.
Viruses ; 13(1)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477376

RESUMO

Quinacrine (Qx), a molecule used as an antimalarial, has shown anticancer, antiprion, and antiviral activity. The most relevant antiviral activities of Qx are related to its ability to raise pH in acidic organelles, diminishing viral enzymatic activity for viral cell entry, and its ability to bind to viral DNA and RNA. Moreover, Qx has been used as an immunomodulator in cutaneous lupus erythematosus and various rheumatological diseases, by inhibiting phospholipase A2 modulating the Th1/Th2 response. The aim of this study was to evaluate the potential antiviral effect of Qx against denominated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Vero E6 cells. The cytotoxicity of Qx in Vero E6 cells was determined by the MTT assay. Afterwards, Vero E6 cells were infected with SARS-CoV-2 at different multiplicities of infections (MOIs) of 0.1 and 0.01 in the presence of Qx (0-30 µM) to determinate the half maximal effective concentration (EC50). After 48 h, the effect of Qx against SARS-CoV-2 was assessed by viral cytotoxicity and viral copy numbers, the last were determined by digital real-time RT-PCR (ddRT-PCR). Additionally, electron and confocal microscopy of Vero E6 cells infected and treated with Qx was studied. Our data show that Qx reduces SARS-CoV-2 virus replication and virus cytotoxicity, apparently by inhibition of viral ensemble, as observed by ultrastructural images, suggesting that Qx could be a potential drug for further clinical studies against coronavirus disease 2019 (COVID-19) infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Quinacrina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Microscopia Eletrônica de Transmissão , Células Vero , Carga Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
6.
Vector Borne Zoonotic Dis ; 18(5): 258-265, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29652641

RESUMO

Bartonellae are emerging blood-borne bacteria that have been recovered from a wide range of mammalian species and arthropod vectors around the world. Bats are now recognized as a potential wildlife reservoir for a diverse number of Bartonella species, including the zoonotic Candidatus B. mayotimonensis. These bat-borne Bartonella species have also been detected in the obligate ectoparasites of bats, such as blood-feeding flies, which could transmit these bacteria within bat populations. To better understand this potential for transmission, we investigated the relatedness between Bartonella detected or isolated from bat hosts sampled in Mexico and their ectoparasites. Bartonella spp. were identified in bat flies collected on two bat species, with the highest prevalence in Trichobius parasiticus and Strebla wiedemanni collected from common vampire bats (Desmodus rotundus). When comparing Bartonella sequences from a fragment of the citrate synthase gene (gltA), vector-associated strains were diverse and generally close to, but distinct from, those recovered from their bacteremic bat hosts in Mexico. Complete Bartonella sequence concordance was observed in only one bat-vector pair. The diversity of Bartonella strains in bat flies reflects the frequent host switch by bat flies, as they usually do not live permanently on their bat host. It may also suggest a possible endosymbiotic relationship with these vectors for some of the Bartonella species carried by bat flies, whereas others could have a mammalian host.


Assuntos
Infecções por Bartonella/veterinária , Bartonella/isolamento & purificação , Quirópteros/parasitologia , Dípteros/microbiologia , Reservatórios de Doenças/parasitologia , Animais , Bartonella/genética , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , Quirópteros/microbiologia , Dípteros/classificação , Reservatórios de Doenças/microbiologia , Variação Genética , Humanos , México/epidemiologia , Filogenia , Prevalência , Zoonoses
7.
Vaccine ; 36(2): 292-298, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29191739

RESUMO

Rabies DNA vaccines based on full-length glycoprotein (G) induce virus neutralizing antibody (VNA) responses and protect against the virus challenge. Although conformational epitopes of G are the main target of VNAs, some studies have shown that a polypeptide linear epitope G5 is also able to induce VNAs. However, a G5 DNA vaccine has not been explored. While multiple doses of DNA vaccines are required in order to confer a protective immune response, this could be overcome by the inclusion of C3d-P28, a molecular adjuvant is know to improve the antibody response in several anti-viral vaccine models. To induce and enhance the immune response against rabies in mice, we evaluated two DNA vaccines based on the linear epitope G5 of Rabies Virus (RABV) glycoprotein (pVaxG5 vaccine) and another vaccine consisting of G5 fused to the molecular adjuvant C3d-P28 (pVaxF1 vaccine). VNA responses were measured in mice immunized with both vaccines. The VNA levels from the group immunized with pVaxG5 decreased gradually, while those from the group vaccinated with pVaxF1 remained high throughout the experimental study. After challenge with 22 LD50 of the Challenge Virus Strain (CVS), the survival rate of mice immunized with pVaxG5 and pVaxF1 was increased by 27% and 50% respectively, in comparison to the PBS group. Furthermore, the in vitro proliferation of anti-rabies specific spleen CD4+ and CD8+ T cells from mice immunized with pVaxF1 was observed. Collectively, these results suggest that the linear G5 epitope is a potential candidate vaccine. Furthermore, the addition of a C3d-P28 adjuvant contributed to enhanced protection, the sustained production of VNAs, and a specific T-cell proliferative response.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Imunidade Humoral , Vacina Antirrábica/imunologia , Raiva/prevenção & controle , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Camundongos Endogâmicos BALB C , Vacina Antirrábica/administração & dosagem , Análise de Sobrevida , Vacinas de DNA/administração & dosagem
8.
Vector Borne Zoonotic Dis ; 18(1): 70-73, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29232534

RESUMO

Blood-feeding arthropods play a major role in the transmission of several flaviviruses, which represent an important problem for human health. Currently, dengue is one of the most important arboviral emerging diseases worldwide. Furthermore, some previous studies have reported the presence of viral nucleic acids and antibodies against dengue virus (DENV) in wild animals. Our knowledge of the role played by wildlife reservoirs in the sylvatic transmission and maintenance of DENV remains limited. Our objective was to screen blood-feeding ectoparasites (bat flies) and their common vampire bat (Desmodus rotundus) hosts, for flaviviruses in Hidalgo, Mexico. We detected Flavivirus sequences in 38 pools of ectoparasites (Diptera: Streblidae, Strebla wiedemanni and Trichobius parasiticus) and 8 tissue samples of D. rotundus by RT-PCR and semi-nested PCR using FlaviPF1S, FlaviPR2bis, and FlaviPF3S primers specific for NS5, a gene highly conserved among flaviviruses. Phylogenetic inference analysis performed using the maximum likelihood algorithm implemented in PhyML showed that six sequences clustered with DENV (bootstrap value = 53.5%). Although this study supports other reports of DENV detection in bats and arthropods other than Aedes mosquitoes, the role of these ectoparasitic flies and of hematophagous bats in the epidemiology of DENV still warrants further investigation.


Assuntos
Quirópteros/parasitologia , Vírus da Dengue/isolamento & purificação , Dípteros/virologia , Miíase/veterinária , Animais , Vírus da Dengue/genética , Reservatórios de Doenças/veterinária , México , Miíase/epidemiologia , Filogenia
9.
Am J Trop Med Hyg ; 97(2): 413-422, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28722567

RESUMO

Although emerging nonviral pathogens remain relatively understudied in bat populations, there is an increasing focus on identifying bat-associated bartonellae around the world. Many novel Bartonella strains have been described from both bats and their arthropod ectoparasites, including Bartonella mayotimonensis, a zoonotic agent of human endocarditis. This cross-sectional study was designed to describe novel Bartonella strains isolated from bats sampled in Mexico and evaluate factors potentially associated with infection. A total of 238 bats belonging to seven genera were captured in five states of Central Mexico and the Yucatan Peninsula. Animals were screened by bacterial culture from whole blood and/or polymerase chain reaction of DNA extracted from heart tissue or blood. Bartonella spp. were isolated or detected in 54 (22.7%) bats, consisting of 41 (38%) hematophagous, 10 (16.4%) insectivorous, and three (4.3%) phytophagous individuals. This study also identified Balantiopteryx plicata as another possible bat reservoir of Bartonella. Univariate and multivariate logistic regression models suggested that Bartonella infection was positively associated with blood-feeding diet and ectoparasite burden. Phylogenetic analysis identified a number of genetic variants across hematophagous, phytophagous, and insectivorous bats that are unique from described bat-borne Bartonella species. However, these strains were closely related to those bartonellae previously identified in bat species from Latin America.


Assuntos
Infecções por Bartonella/genética , Infecções por Bartonella/microbiologia , Bartonella/genética , Bartonella/isolamento & purificação , Quirópteros/microbiologia , Animais , Estudos Transversais , Variação Genética , México , Filogenia
10.
Vector Borne Zoonotic Dis ; 16(10): 636-42, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27626126

RESUMO

Bartonella species are highly endemic among wild rodents in many parts of the world. Blood and/or blood clot cultures from 38 rodents, including 27 Yucatan deer mouse (Peromyscus yucatanicus), 7 Gaumer's spiny pocket mouse (Heteromys gaumeri), 2 black rats (Rattus rattus) and 2 big-eared climbing rats (Ototylomys phyllotis) captured near Merida, Yucatan, Mexico, led to the isolation in 3-4 days of small gram-negative bacilli, which were identified as Bartonella spp. based on colony morphology. DNA extraction and PCR testing were also performed from heart samples of 35 of these 38 rodents. Overall, Bartonella spp. were isolated from the blood/blood clots of 22 (58%) rodents. All Bartonella-positive rodents were Yucatán deer mice from San José Pituch. Sequencing of a fragment of the gltA gene showed that all but one rodent isolates were closest to B. vinsonii subsp. vinsonii and one isolate was intermediate between B. vinsonii subsp. berkhoffii and B. vinsonii subsp. arupensis. Further analysis of concatenated housekeeping genes (gltA, ftsZ, rpoB, and 16S rRNA) suggests that this outlier isolate is a new subspecies within the B. vinsonii genogroup, for which we proposed the name B. vinsonii subsp. yucatanensis.


Assuntos
Bartonella/classificação , Bartonella/isolamento & purificação , Roedores/microbiologia , Animais , Bartonella/genética , México , Filogenia , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
11.
Am J Trop Med Hyg ; 91(1): 129-31, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24752688

RESUMO

To identify the relationship between landscape use and dengue virus (DENV) occurrence in bats, we investigated the presence of DENV from anthropogenically changed and unaltered landscapes in two Biosphere Reserves: Calakmul (Campeche) and Montes Azules (Chiapas) in southern Mexico. Spleen samples of 146 bats, belonging to 16 species, were tested for four DENV serotypes with standard reverse transcriptase polymerase chain reaction (RT-PCR) protocols. Six bats (4.1%) tested positive for DENV-2: four bats in Calakmul (two Glossophaga soricina, one Artibeus jamaicensis, and one A. lituratus) and two bats in Montes Azules (both A. lituratus). No effect of anthropogenic disturbance on the occurrence of DENV was detected; however, all three RT-PCR-positive bat species are considered abundant species in the Neotropics and well-adapted to disturbed habitats. To our knowledge, this study is the first study conducted in southeastern Mexico to identify DENV-2 in bats by a widely accepted RT-PCR protocol. The role that bats play on DENV's ecology remains undetermined.


Assuntos
Vírus da Dengue/genética , Dengue/veterinária , Animais , Quirópteros , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/classificação , México/epidemiologia , Tipagem Molecular , Reação em Cadeia da Polimerase/veterinária , Baço/virologia , Reforma Urbana
12.
Trans R Soc Trop Med Hyg ; 98(10): 577-84, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15289094

RESUMO

To investigate if non-hematophagous bats play a role in outbreaks of rabies and blue eye disease (LPMV), we studied the seroprevalence against both agents in several species of non-hematophagous bats on the sub-tropical Pacific coast of the state of Colima, Mexico. The survey covered a predominantly agricultural area (disturbed), and an area dominated by semideciduous dry forest (undisturbed). A total of 151 non-hematophagous bats of 16 species were captured from the two areas. Fifty-six (37%) had antirabic antibodies (Ab) while 87 (58%) did not and 8 samples (5%) had to be discarded because of hemolysis. A much lower (P<0.05) prevalence of antirabic Ab was found in bats caught in disturbed areas (22.7%) compared with those from undisturbed areas (51.9%). The presence of antirabic Ab was not related to sex, genera or feeding habits. The higher prevalence found in bats in the undisturbed area may be the result of more frequent interspecies encounters. Of the 108 sera analyzed for antibodies against LPMV, only one was positive (a male Rhogeessa parvula major, captured in the undisturbed area). This suggests that bats in the surveyed localities do not play a role in the epidemiology of LPMV.


Assuntos
Anticorpos Antivirais/sangue , Quirópteros/virologia , Vírus da Raiva/isolamento & purificação , Raiva/epidemiologia , Infecções por Rubulavirus/epidemiologia , Rubulavirus/isolamento & purificação , Animais , Vetores de Doenças , Feminino , Masculino , México/epidemiologia , Prevalência , Raiva/veterinária , Vírus da Raiva/imunologia , Rubulavirus/imunologia , Infecções por Rubulavirus/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA