Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37297141

RESUMO

This study investigates the stress corrosion cracking (SCC) behavior of type 316L stainless steel (SS316L) produced with sinter-based material extrusion additive manufacturing (AM). Sinter-based material extrusion AM produces SS316L with microstructures and mechanical properties comparable to its wrought counterpart in the annealed condition. However, despite extensive research on SCC of SS316L, little is known about the SCC of sinter-based AM SS316L. This study focuses on the influence of sintered microstructures on SCC initiation and crack-branching susceptibility. Custom-made C-rings were exposed to different stress levels in acidic chloride solutions at various temperatures. Solution-annealed (SA) and cold-drawn (CD) wrought SS316L were also tested to understand the SCC behavior of SS316L better. Results showed that sinter-based AM SS316L was more susceptible to SCC initiation than SA wrought SS316L but more resistant than CD wrought SS316L, as determined by the crack initiation time. Sinter-based AM SS316L showed a noticeably lower tendency for crack-branching than both wrought SS316L counterparts. The investigation was supported by comprehensive pre- and post-test microanalysis using light optical microscopy, scanning electron microscopy, electron backscatter diffraction, and micro-computed tomography.

2.
Materials (Basel) ; 16(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374475

RESUMO

There is a fast-growing interest in the use of selective laser melting (SLM) for metal/alloy additive manufacturing. Our current knowledge of SLM-printed 316 stainless steel (SS316) is limited and sometimes appears sporadic, presumably due to the complex interdependent effects of a large number of process variables of the SLM processing. This is reflected in the discrepant findings in the crystallographic textures and microstructures in this investigation compared to those reported in the literature, which also vary among themselves. The as-printed material is macroscopically asymmetric in terms of both structure and crystallographic texture. The <101> and <111> crystallographic directions align parallel with the SLM scanning direction (SD) and build direction (BD), respectively. Likewise, some characteristic low-angle boundary features have been reported to be crystallographic, while this investigation unequivocally proves them to be non-crystallographic, since they always maintain an identical alignment with the SLM laser scanning direction, irrespective of the matrix material's crystal orientation. There are also 500 ± 200 nm columnar or cellular features, depending on the cross-section, which are generally found all over the sample. These columnar or cellular features are formed with walls made of dense packing of dislocations entangled with Mn-, Si- and O-enriched amorphous inclusions. They remain stable after ASM solution treatments at a temperature of 1050 °C, and therefore, are capable of hindering boundary migration events of recrystallization and grain growth. Thus, the nanoscale structures can be retained at high temperatures. Large 2-4 µm inclusions form during the solution treatment, within which the chemical and phase distribution are heterogeneous.

3.
Hip Int ; 33(6): 1072-1078, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36357353

RESUMO

BACKGROUND: Fretting corrosion at modular junctions contributes to arthroplasty failure. Currently, no evidence-based guidelines are available regarding the acceptable level of trunnion corrosion that can occur in vivo. We aimed to examine the relationship between trunnion corrosion and risk of re-revision to assist surgeons with intraoperative decision making. METHOD: Grading by 3 independent examiners of revised and re-revised head components was performed using a modified Goldberg corrosion scale. Samples were separated into low-grade (LG) and high-grade (HG) corrosion. Mechanical testing determined the relationship between corrosion severity and pull-off strength at the head-stem junction. RESULTS: 529 retrieved femoral heads were analysed. A positive association was detected between males and HG corrosion (OR 2.07; 95% CI, 1.45-2.94; p < 0.001). No difference between the survivorship of LG and HG heads was detected (p-value = 0.247). In the re-revised sample, the first implant had a time in situ that was on average 7.97 years longer (95% CI, 5.4-10.6) than that of the subsequent re-revised femoral head. Severe corrosion on the first head was associated with a 37.5 (95% CI, 4.00-1944) fold increase of HG on the subsequent head (p < 0.001). Femoral disassembly force had a positive correlation with stem taper corrosion grade (p = 0.001). CONCLUSIONS: A well-fixed stem with corrosion may remain in situ.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Masculino , Humanos , Cabeça do Fêmur/cirurgia , Artroplastia de Quadril/efeitos adversos , Prótese de Quadril/efeitos adversos , Falha de Prótese , Desenho de Prótese , Corrosão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA