Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 16(1): e1007314, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971941

RESUMO

The last decade has witnessed a remarkable increase in our ability to measure genetic information. Advancements of sequencing technologies are challenging the existing methods of data storage and analysis. While methods to cope with the data deluge are progressing, many biologists have lagged behind due to the fast pace of computational advancements and tools available to address their scientific questions. Future generations of biologists must be more computationally aware and capable. This means they should be trained to give them the computational skills to keep pace with technological developments. Here, we propose a model that bridges experimental and bioinformatics concepts using the Oxford Nanopore Technologies (ONT) sequencing platform. We provide both a guide to begin to empower the new generation of educators, scientists, and students in performing long-read assembly of bacterial and bacteriophage genomes and a standalone virtual machine containing all the required software and learning materials for the course.


Assuntos
Biologia Computacional/educação , Sequenciamento por Nanoporos , Humanos , Software
2.
BMC Genomics ; 20(1): 916, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791228

RESUMO

BACKGROUND: The lager brewing yeast, S. pastorianus, is a hybrid between S. cerevisiae and S. eubayanus with extensive chromosome aneuploidy. S. pastorianus is subdivided into Group 1 and Group 2 strains, where Group 2 strains have higher copy number and a larger degree of heterozygosity for S. cerevisiae chromosomes. As a result, Group 2 strains were hypothesized to have emerged from a hybridization event distinct from Group 1 strains. Current genome assemblies of S. pastorianus strains are incomplete and highly fragmented, limiting our ability to investigate their evolutionary history. RESULTS: To fill this gap, we generated a chromosome-level genome assembly of the S. pastorianus strain CBS 1483 from Oxford Nanopore MinION DNA sequencing data and analysed the newly assembled subtelomeric regions and chromosome heterozygosity. To analyse the evolutionary history of S. pastorianus strains, we developed Alpaca: a method to compute sequence similarity between genomes without assuming linear evolution. Alpaca revealed high similarities between the S. cerevisiae subgenomes of Group 1 and 2 strains, and marked differences from sequenced S. cerevisiae strains. CONCLUSIONS: Our findings suggest that Group 1 and Group 2 strains originated from a single hybridization involving a heterozygous S. cerevisiae strain, followed by different evolutionary trajectories. The clear differences between both groups may originate from a severe population bottleneck caused by the isolation of the first pure cultures. Alpaca provides a computationally inexpensive method to analyse evolutionary relationships while considering non-linear evolution such as horizontal gene transfer and sexual reproduction, providing a complementary viewpoint beyond traditional phylogenetic approaches.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Saccharomyces/genética , Cerveja , Cromossomos Fúngicos , Haploidia , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização Genética , Sequenciamento por Nanoporos
3.
Front Genet ; 10: 242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001314

RESUMO

Saccharomyces pastorianus lager-brewing yeasts are domesticated hybrids of S. cerevisiae x S. eubayanus that display extensive inter-strain chromosome copy number variation and chromosomal recombinations. It is unclear to what extent such genome rearrangements are intrinsic to the domestication of hybrid brewing yeasts and whether they contribute to their industrial performance. Here, an allodiploid laboratory hybrid of S. cerevisiae and S. eubayanus was evolved for up to 418 generations on wort under simulated lager-brewing conditions in six independent sequential batch bioreactors. Characterization of 55 single-cell isolates from the evolved cultures showed large phenotypic diversity and whole-genome sequencing revealed a large array of mutations. Frequent loss of heterozygosity involved diverse, strain-specific chromosomal translocations, which differed from those observed in domesticated, aneuploid S. pastorianus brewing strains. In contrast to the extensive aneuploidy of domesticated S. pastorianus strains, the evolved isolates only showed limited (segmental) aneuploidy. Specific mutations could be linked to calcium-dependent flocculation, loss of maltotriose utilization and loss of mitochondrial activity, three industrially relevant traits that also occur in domesticated S. pastorianus strains. This study indicates that fast acquisition of extensive aneuploidy is not required for genetic adaptation of S. cerevisiae × S. eubayanus hybrids to brewing environments. In addition, this work demonstrates that, consistent with the diversity of brewing strains for maltotriose utilization, domestication under brewing conditions can result in loss of this industrially relevant trait. These observations have important implications for the design of strategies to improve industrial performance of novel laboratory-made hybrids.

4.
Bioinformatics ; 34(17): i732-i742, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423098

RESUMO

Motivation: A long-standing limitation in comparative genomic studies is the dependency on a reference genome, which hinders the spectrum of genetic diversity that can be identified across a population of organisms. This is especially true in the microbial world where genome architectures can significantly vary. There is therefore a need for computational methods that can simultaneously analyze the architectures of multiple genomes without introducing bias from a reference. Results: In this article, we present Ptolemy: a novel method for studying the diversity of genome architectures-such as structural variation and pan-genomes-across a collection of microbial assemblies without the need of a reference. Ptolemy is a 'top-down' approach to compare whole genome assemblies. Genomes are represented as labeled multi-directed graphs-known as quivers-which are then merged into a single, canonical quiver by identifying 'gene anchors' via synteny analysis. The canonical quiver represents an approximate, structural alignment of all genomes in a given collection encoding structural variation across (sub-) populations within the collection. We highlight various applications of Ptolemy by analyzing structural variation and the pan-genomes of different datasets composing of Mycobacterium, Saccharomyces, Escherichia and Shigella species. Our results show that Ptolemy is flexible and can handle both conserved and highly dynamic genome architectures. Ptolemy is user-friendly-requires only FASTA-formatted assembly along with a corresponding GFF-formatted file-and resource-friendly-can align 24 genomes in ∼10 mins with four CPUs and <2 GB of RAM. Availability and implementation: Github: https://github.com/AbeelLab/ptolemy. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma Microbiano , Sintenia , Software
5.
FEMS Yeast Res ; 17(7)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961779

RESUMO

The haploid Saccharomyces cerevisiae strain CEN.PK113-7D is a popular model system for metabolic engineering and systems biology research. Current genome assemblies are based on short-read sequencing data scaffolded based on homology to strain S288C. However, these assemblies contain large sequence gaps, particularly in subtelomeric regions, and the assumption of perfect homology to S288C for scaffolding introduces bias. In this study, we obtained a near-complete genome assembly of CEN.PK113-7D using only Oxford Nanopore Technology's MinION sequencing platform. Fifteen of the 16 chromosomes, the mitochondrial genome and the 2-µm plasmid are assembled in single contigs and all but one chromosome starts or ends in a telomere repeat. This improved genome assembly contains 770 Kbp of added sequence containing 248 gene annotations in comparison to the previous assembly of CEN.PK113-7D. Many of these genes encode functions determining fitness in specific growth conditions and are therefore highly relevant for various industrial applications. Furthermore, we discovered a translocation between chromosomes III and VIII that caused misidentification of a MAL locus in the previous CEN.PK113-7D assembly. This study demonstrates the power of long-read sequencing by providing a high-quality reference assembly and annotation of CEN.PK113-7D and places a caveat on assumed genome stability of microorganisms.


Assuntos
Genoma Fúngico , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Nanoporos , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Cromossomos Fúngicos , Biologia Computacional/métodos , Heterogeneidade Genética , Genômica/métodos , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA