Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645542

RESUMO

Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.I668F is a founder variant among Ashkenazi Jews (allele frequency of ~2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function.


Assuntos
Alelos , Cardiopatias Congênitas , Doenças das Valvas Cardíacas , Mutação com Perda de Função , Fosfolipase D , Feminino , Cardiopatias Congênitas/enzimologia , Cardiopatias Congênitas/genética , Doenças das Valvas Cardíacas/enzimologia , Doenças das Valvas Cardíacas/genética , Humanos , Masculino , Fosfolipase D/genética , Fosfolipase D/metabolismo
2.
Nat Chem Biol ; 16(4): 400-407, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32198492

RESUMO

The signal transduction enzyme phospholipase D1 (PLD1) hydrolyzes phosphatidylcholine to generate the lipid second-messenger phosphatidic acid, which plays roles in disease processes such as thrombosis and cancer. PLD1 is directly and synergistically regulated by protein kinase C, Arf and Rho GTPases, and the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Here, we present a 1.8 Å-resolution crystal structure of the human PLD1 catalytic domain, which is characterized by a globular fold with a funnel-shaped hydrophobic cavity leading to the active site. Adjacent is a PIP2-binding polybasic pocket at the membrane interface that is essential for activity. The C terminus folds into and contributes part of the catalytic pocket, which harbors a phosphohistidine that mimics an intermediate stage of the catalytic cycle. Mapping of PLD1 mutations that disrupt RhoA activation identifies the RhoA-PLD1 binding interface. This structure sheds light on PLD1 regulation by lipid and protein effectors, enabling rationale inhibitor design for this well-studied therapeutic target.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase D/metabolismo , Fosfolipase D/ultraestrutura , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Células COS , Catálise , Domínio Catalítico , Chlorocebus aethiops , Humanos , Lipídeos de Membrana , Fosfatidilcolinas , Ligação Proteica , Proteína Quinase C/metabolismo , Sistemas do Segundo Mensageiro , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA