Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3517, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664406

RESUMO

The oxidative potential (OP) of particulate matter (PM) is a major driver of PM-associated health effects. In India, the emission sources defining PM-OP, and their local/regional nature, are yet to be established. Here, to address this gap we determine the geographical origin, sources of PM, and its OP at five Indo-Gangetic Plain sites inside and outside Delhi. Our findings reveal that although uniformly high PM concentrations are recorded across the entire region, local emission sources and formation processes dominate PM pollution. Specifically, ammonium chloride, and organic aerosols (OA) from traffic exhaust, residential heating, and oxidation of unsaturated vapors from fossil fuels are the dominant PM sources inside Delhi. Ammonium sulfate and nitrate, and secondary OA from biomass burning vapors, are produced outside Delhi. Nevertheless, PM-OP is overwhelmingly driven by OA from incomplete combustion of biomass and fossil fuels, including traffic. These findings suggest that addressing local inefficient combustion processes can effectively mitigate PM health exposure in northern India.

2.
Environ Sci Technol ; 58(2): 1244-1254, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38178789

RESUMO

Carbonaceous aerosols (CA) from anthropogenic emissions have been significantly reduced in urban China in recent years. However, the relative contributions of fossil and nonfossil sources to CA in rural and background regions of China remain unclear. In this study, the sources of different carbonaceous fractions in fine aerosols (PM2.5) from five background sites of the China Meteorological Administration Atmosphere Watch Network during the winter of 2019 and 2020 were quantified using radiocarbon (14C) and organic markers. The results showed that nonfossil sources contributed 44-69% to total carbon at these five background sites. Fossil fuel combustion was the predominant source of elemental carbon at all sites (73 ± 12%). Nonfossil sources dominated organic carbon (OC) in these background regions (61 ± 13%), with biomass burning or biogenic-derived secondary organic carbon (SOC) as the most important contributors. However, the relative fossil fuel source to OC in China (39 ± 13%) still exceeds those at other regional/background sites in Asia, Europe, and the USA. SOC dominated the fossil fuel-derived OC, highlighting the impact of regional transport from anthropogenic sources on background aerosol levels. It is therefore imperative to develop and implement aerosol reduction policies and technologies tailored to both the anthropogenic and biogenic emissions to mitigate the environmental and health risks of aerosol pollution across China.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Fósseis , Monitoramento Ambiental/métodos , China , Carbono , Combustíveis Fósseis/análise , Aerossóis/análise , Estações do Ano , Atmosfera
3.
Sci Rep ; 13(1): 18487, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898674

RESUMO

Isotope-based records provide valuable information on past climate changes. However, it is not always trivial to disentangle past changes in the isotopic composition of precipitation from possible changes in evaporative enrichment, and seasonality may need to be considered. Here, we analyzed δ2H on n-alkanes and δ18O on hemicellulose sugars in sediments from Bichlersee, Bavaria, covering the Late Glacial and Early Holocene. Our δ2Hn-C31 record documents past changes in the isotopic composition of summer precipitation and roughly shows the isotope pattern known from Greenland. Both records show lower values during the Younger Dryas, but at Bichlersee the signal is less pronounced, corroborating earlier suggestions that the Younger Dryas was mainly a winter phenomenon and less extreme during summer. δ18Ofucose records the isotopic composition of the lake water during summer and is sensitive to evaporative enrichment. Coupling δ2Hn-C31 and δ18Ofucose allows calculating lake water deuterium-excess and thus disentangling changes in the isotopic composition of precipitation and evaporative enrichment. Our deuterium-excess record reveals that the warm Bølling-Allerød and Early Holocene were characterized by more evaporative enrichment compared to the colder Younger Dryas. Site-specific hydrological conditions, seasonality, and coupling δ2H and δ18O are thus important when interpreting isotope records.

5.
Environ Int ; 168: 107466, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986983

RESUMO

Biomass burning (BB) is an important contributor to the air pollution in Southeast Asia (SEA), but the emission sources remain great uncertainty. In this study, PM2.5 samples were collected from an urban (Chiang Mai University, CMU) and a rural (Nong Tao village, NT) site in Chiang Mai, Thailand from February to April (high BB season, HBB) and from June to September (low BB season, LBB) in 2018. Source apportionment of carbonaceous aerosols was carried out by Latin Hypercube Sampling (LHS) method incorporating the radiocarbon (14C) and organic markers (e.g., dehydrated sugars, aromatic acids, etc.). Thereby, carbonaceous aerosols were divided into the fossil-derived elemental carbon (ECf), BB-derived EC (ECbb), fossil-derived primary and secondary organic carbon (POCf, SOCf), BB-derived OC (OCbb) and the remaining OC (OCnf, other). The fractions of ECbb generally prevailed over ECf throughout the year. OCbb was the dominant contributor to total carbon with a clear seasonal trend (65.5 ± 5.8 % at CMU and 79.9 ± 7.6 % at NT in HBB, and 39.1 ± 7.9 % and 42.8 ± 4.6 % in LBB). The distribution of POCf showed a spatial difference with a higher contribution at CMU, while SOCf displayed a temporal variation with a greater fraction in LBB. OCnf, other was originated from biogenic secondary aerosols, cooking emissions and bioaerosols as resolved by the principal component analysis with multiple liner regression model. The OCnf, other contributed within a narrow range of 6.6 %-14.4 %, despite 34.9 ± 7.9 % at NT in LBB. Our results highlight the dominance of BB-derived fractions in carbonaceous aerosols in HBB, and call the attention to the higher production of SOC in LBB.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Tailândia , Biomassa , Monitoramento Ambiental/métodos , Carbono/análise , Aerossóis/análise , Estações do Ano , China
6.
Sci Rep ; 12(1): 2829, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181711

RESUMO

The repeated expansion of East Asian steppe cultures was a key driver of Eurasian history, forging new social, economic, and biological links across the continent. Climate has been suggested as important driver of these poorly understood cultural expansions, but paleoclimate records from the Mongolian Plateau often suffer from poor age control or ambiguous proxy interpretation. Here, we use a combination of geochemical analyses and comprehensive radiocarbon dating to establish the first robust and detailed record of paleohydrological conditions for Lake Telmen, Mongolia, covering the past ~ 4000 years. Our record shows that humid conditions coincided with solar minima, and hydrological modeling confirms the high sensitivity of the lake to paleoclimate changes. Careful comparisons with archaeological and historical records suggest that in the vast semi-arid grasslands of eastern Eurasia, solar minima led to reduced temperatures, less evaporation, and high biomass production, expanding the power base for pastoral economies and horse cavalry. Our findings suggest a crucial link between temperature dynamics in the Eastern Steppe and key social developments, such as the emergence of pastoral empires, and fuel concerns that global warming enhances water scarcity in the semi-arid regions of interior Eurasia.

7.
Sci Total Environ ; 817: 152596, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34963602

RESUMO

Carbon-14 is a key radionuclide in the safety assessment of deep geological repositories (DGR) for low- and intermediate-level radioactive waste (L/ILW). Irradiated metallic wastes generated during the decommissioning of nuclear power plants are an important source of 14C after their disposal in a DGR. The chemical form of 14C released from the irradiated metallic wastes determines the pathway of migration from the DGR into the environment. In a long-term corrosion experiment with irradiated steel simulating the hyper-alkaline, anoxic conditions of a cement-based DGR, total inorganic (TI14C2) and organic 14C contents (TO14C) in the liquid and gas phases (TG14C), as well as individual 14C-bearing carbon compounds by compound-specific radiocarbon analysis (CSRA), were quantified using accelerator mass spectrometry (AMS). The AMS-based quantification allows the determination of 14C in the pico- to femtomolar concentration range. An initial increase in TO14C was observed, which could be attributed partially to the release of 14C-bearing oxygenated carbon compounds. In the long term, TO14C and the TI14C remain constant, while TG14C increases over time according to a corrosion rate of steel of 1 nm/yr. In solution, 14C-bearing carboxylic acids (CAs) contribute ~40% to TO14C, and they are the main 14C carriers along with 14C-bearing carbonate (14CO32-). The remaining fraction of TO14C (~ 60%) is likely due to the presence of as yet non-identified polymeric or colloidal organic material. In the gas phase, 14CH4 accounts for more than 80% of the TG14C, while only trace amounts of 14CO, and other small 14C-bearing hydrocarbons have been detected. In a DGR, the release of 14C will be mainly in gaseous form and migrate via the gas pathway from the repository near field to the surrounding host rock and eventually to the environment.


Assuntos
Resíduos Radioativos , Radioisótopos de Carbono , Corrosão , Resíduos Radioativos/análise , Aço
8.
Faraday Discuss ; 226: 290-313, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33241811

RESUMO

This study aims to critically evaluate the source apportionment of fine particles by multiple receptor modelling approaches, including carbon mass balance modelling of filter-based radiocarbon (14C) data, Chemical Mass Balance (CMB) and Positive Matrix Factorization (PMF) analysis on filter-based chemical speciation data, and PMF analysis on Aerosol Mass Spectrometer (AMS-PMF) or Aerosol Chemical Speciation Monitor (ACSM-PMF) data. These data were collected as part of the APHH-Beijing (Atmospheric Pollution and Human Health in a Chinese Megacity) field observation campaigns from 10th November to 12th December in winter 2016 and from 22nd May to 24th June in summer 2017. 14C analysis revealed the predominant contribution of fossil fuel combustion to carbonaceous aerosols in winter compared with non-fossil fuel sources, which is supported by the results from other methods. An extended Gelencsér (EG) method incorporating 14C data, as well as the CMB and AMS/ACSM-PMF methods, generated a consistent source apportionment for fossil fuel related primary organic carbon. Coal combustion, traffic and biomass burning POC were comparable for CMB and AMS/ACSM-PMF. There are uncertainties in the EG method when estimating biomass burning and cooking OC. The POC from cooking estimated by different methods was poorly correlated, suggesting a large uncertainty when differentiating this source type. The PM2.5 source apportionment results varied between different methods. Through a comparison and correlation analysis of CMB, PMF and AMS/ACSM-PMF, the CMB method appears to give the most complete and representative source apportionment of Beijing aerosols. Based upon the CMB results, fine aerosols in Beijing were mainly secondary inorganic ion formation, secondary organic aerosol formation, primary coal combustion and from biomass burning emissions.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Monitoramento Ambiental , Humanos , Material Particulado/análise
9.
Sensors (Basel) ; 20(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092311

RESUMO

Dynamic elastic strain in ~1.8 and 1.0 m diameter containment vessels containing a high explosive detonation was measured using an array of fiber Bragg gratings. The all-optical method, called real-time localized strain measurement, recorded the strain for 10 ms after detonation with additional measurements being sequentially made at a rate of 1.7 MHz. A swept wavelength laser source provided the repetition rate necessary for such high-speed measurements while also providing enough signal strength and bandwidth to simultaneously measure 8 or more unique points on the vessel's surface. The data presented here arethen compared with additional diagnostics consisting of a fast spectral interferometer and an optical backscatter reflectometer to show a comparison between the local and global changes in the vessel strain, both dynamically and statically to further characterize the performance of the localized strain measurement. The results are also compared with electrical resistive strain gauges and finite element analysis simulations.

10.
Environ Sci Technol ; 50(12): 6284-92, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27203471

RESUMO

Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1-1.3 µg m(-3)). The remaining 24 ± 11% (0.03-0.42 µg m(-3)) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5-2.8 µg m(-3)), approximately half of which was apportioned to primary biomass-burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Carbono , China , Monitoramento Ambiental , Fósseis , Estações do Ano
11.
Nucl Instrum Methods Phys Res B ; 294: 300-306, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24860204

RESUMO

We designed and optimized a novel device "target" that directs a CO2 gas pulse onto a Ti surface where a Cs+ beam generates C- from the CO2. This secondary ionization target enables an accelerator mass spectrometer to ionize pulses of CO2 in the negative mode to measure 14C/12C isotopic ratios in real time. The design of the targets were based on computational flow dynamics, ionization mechanism and empirical optimization. As part of the ionization mechanism, the adsorption of CO2 on the Ti surface was fitted with the Jovanovic-Freundlich isotherm model using empirical and simulation data. The inferred adsorption constants were in good agreement with other works. The empirical optimization showed that amount of injected carbon and the flow speed of the helium carrier gas improve the ionization efficiency and the amount of 12C- produced until reaching a saturation point. Linear dynamic range between 150 and 1000 ng of C and optimum carrier gas flow speed of around 0.1 mL/min were shown. It was also shown that the ionization depends on the area of the Ti surface and Cs+ beam cross-section. A range of ionization efficiency of 1-2.5% was obtained by optimizing the described parameters.

12.
Anal Chem ; 83(3): 1084-92, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21174437

RESUMO

Detection of explosives is important for public safety. A recently developed low-temperature plasma (LTP) probe for desorption and ionization of samples in the ambient environment ( Anal. Chem. 2008 , 80 , 9097 ) is applied in a comprehensive evaluation of analytical performance for rapid detection of 13 explosives and explosives-related compounds. The selected chemicals [pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), cyclo-1,3,5-trimethylenetrinitramine (RDX), tetryl, cyclo-1,3,5,7-tetramethylenetetranitrate (HMX), hexamethylene triperoxide diamine (HMTD), 2,4-dinitrotoluene, 1,3-dinitrobenzene, 1,3,5-trinitrobenzene, 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, 2,6-dinitrotoluene, and 4-nitrotoluene) were tested at levels in the range 1 pg-10 ng. Most showed remarkable sensitivity in the negative-ion mode, yielding limits of detection in the low picogram range, particularly when analyzed from a glass substrate heated to 120 °C. Ions typically formed from these molecules (M) by LTP include [M + NO(2)](-), [M](-), and [M - NO(2)](-). The LTP-mass spectrometry methodology displayed a linear signal response over three orders of magnitude of analyte amount for the studied explosives. In addition, the effects of synthetic matrices and different types of surfaces were evaluated. The data obtained demonstrate that LTP-MS allows detection of ultratrace amounts of explosives and confirmation of their identity. Tandem mass spectrometry (MS/MS) was used to confirm the presence of selected explosives at low levels; for example, TNT was confirmed at absolute levels as low as 0.6 pg. Linearity and intra- and interday precision were also evaluated, yielding results that demonstrate the potential usefulness and ruggedness of LTP-MS for the detection of explosives of different classes. The use of ion/molecule reactions to form adducts with particular explosives such as RDX and HMX was shown to enhance the selectivity and specificity. This was accomplished by merging the discharge gas with an appropriate reagent headspace vapor (e.g., from a 0.2% trifluoracetic acid solution).


Assuntos
Espectrometria de Massas/métodos , Espectrometria de Massas/instrumentação , Temperatura
13.
Analyst ; 135(8): 1953-60, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20539884

RESUMO

Ambient ionization methods such as desorption electrospray ionization (DESI) allow the analysis of chemicals adsorbed at surfaces without the need for sample (or surface) pretreatment. A limitation of current implementations of these ionization sources is the small size of the area that can be sampled. This makes examination of surfaces of large areas time-consuming because of the need to raster across the surface. This paper describes a DESI source that produces a spray plume with an effective desorption/ionization area of 3.6 cm(2), some 200 times larger than given by conventional DESI sources. Rhodamine 6G and several drugs of abuse (codeine, heroin and diazepam) were used to demonstrate the ability to use large-area DESI MS to perform rapid (a few seconds) representative sampling of areas of the order of several square centimetres without scanning the probe across the surface. The large area ion source displayed high sensitivity (limits of detection in the high nanogram range) and high reproducibility (approximately 20 to 35% relative standard deviation). The rapid analysis of even larger surfaces (hundreds of cm(2)) for traces of explosives is possible using a sorbent surface wipe followed by large-area DESI interrogation performed directly on the wipe material. The performance of this mass transfer dry wipe method was examined by determination of the limits of detection of several explosives. Surfaces with different topographies and compositions were also tested. Using this method, absolute limits of detection observed for HMX and RDX from plastic surfaces and skin were found to be as low as 10 ng cm(-2). The concentration of residue from large surface areas in this technique allowed the detection of 100 ng of explosives from surfaces with areas ranging from 1.00 x 10(3) cm(2) to 1.40 x 10(4) cm(2).


Assuntos
Codeína/análise , Diazepam/análise , Heroína/análise , Rodaminas/análise , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Propriedades de Superfície
14.
Anal Chem ; 82(12): 5313-6, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20496904

RESUMO

A miniature mass spectrometer was modified by incorporating a conversion dynode detector system and the appropriate electronics to allow the detection of negatively charged ions. The system was fitted with a discontinuous atmospheric pressure interface to allow external ionization by desorption electrospray ionization (DESI). It was used to identify the explosives 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenyl-N-methylnitramine (Tetryl), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) present in trace amounts on surfaces (500 pg/cm(2) to 1 microg/cm(2)) both individually and as components of mixtures. Detection of explosives was demonstrated in the presence of an interfering matrix. A large surface (5 cm x15 cm) on which 1 microg/cm(2) samples of TNT, Tetryl, and HMX had been spotted randomly was interrogated in 22 s in the full scan mode, and signals characteristic of each of the explosives were observed in the DESI mass spectrum.

15.
J Am Soc Mass Spectrom ; 20(8): 1397-404, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19299166

RESUMO

A method is described to improve resolution and peak shape in the Orbitrap under certain experimental conditions. In these experiments, an asymmetric anharmonic axial potential was first produced in the Orbitrap by detuning the voltage on the compensator electrode, which results in broad and multiply split mass spectral peaks. An AC waveform applied to the outer electrode, 180 degrees out of phase with ion axial motion and resonant with the frequency of ion axial motion, caused ions of a given m/z to be de-excited to the equator (z = 0) and then immediately re-excited. This process, termed "rephasing," leaves the ion packet with a narrower axial spatial extent and frequency distribution. For example, when the Orbitrap axial potential is thus anharmonically de-tuned, a resolution of 124,000 to 171,000 is obtained, a 2- to 3-fold improvement over the resolution of 40,000 to 60,000 without rephasing, at 10 ng/microL reserpine concentration. Such a rephasing capability may ultimately prove useful in implementing tandem mass spectrometry (MS/MS) in the Orbitrap, bringing the Orbitrap's high mass accuracy and resolution to bear on both the precursor and product ions in the same MS/MS scan and making available the collision energy regime of the Orbitrap, approximately 1500 eV.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Rapid Commun Mass Spectrom ; 23(1): 131-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19086007

RESUMO

Desorption electrospray ionization (DESI) is a droplet-based ionization method that is applied to samples in the ambient environment with little or no sample preparation. Its utility for industrial applications is explored here for the case of pharmaceutical cleaning validation. A non-proximate large-area DESI system was built to examine representative areas of the surfaces of reaction vessels used in active product ingredient (API) manufacturing. A large-area sprayer capable of sampling an area of approximately 2.5 cm(2) was coupled with a transport tube to allow sensitive, representative sampling of APIs from a stainless steel surface 1 m away from the mass spectrometer. The system was used to detect the APIs neostigmine, acebutolol, amiloride, amiodarone, ibuprofen, montelukast, potassium clavulanate, and beta-estradiol, at levels as low as 30-10 ng/cm(2), easily satisfying the general acceptable limits set by the pharmaceutical industry. These levels were achieved from surfaces resembling the equipment used in API manufacturing processes at a rate of 30 s per analysis.


Assuntos
Preparações Farmacêuticas/análise , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Química Farmacêutica/métodos , Sensibilidade e Especificidade
17.
J Am Soc Mass Spectrom ; 19(9): 1367-74, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18635376

RESUMO

The behavior of a completely new ion trap is shown with SIMION 7.0 simulations. The simulated trap, which was a mix of a linear and a 3D trap, was made by axially setting two ion guides with a gap between them. Each guide consisted of three rods with three symmetrically delayed radio frequency (rf) voltages (tripole). The "injected" ions were linearly contained by pulsed potentials on the entrance and exit plates. Then the three-dimensional (3D) rf field in the gap, which was created by the tripole special rod arrangement, could trap the ions when the translational energy was dampened by collisions with low-pressure nitrogen. Because the injected ions were trapped in the small gap, the trapping cycle could be repeated many times before ion ejection, so a high concentrated ion cloud could be obtained. This trapping and accumulation methodology is not possible in most conventional multipole linear traps with even number of poles. Compared with quadrupole linear trap at the same rf amplitude, tripole lost more ions due to strong charge repulsion in the ion cloud. However, tripole could catch up the ions at higher voltage. Radial and axial mass-independent ejection of the ions localized in the tripole gap was very simple, compared with conventional linear ion traps that need extra and complicated electrodes for effective axial ejection.


Assuntos
Espectrometria de Massas/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Campos Eletromagnéticos , Desenho de Equipamento , Termodinâmica
18.
Rapid Commun Mass Spectrom ; 22(9): 1351-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18384193

RESUMO

An ion guide, consisting of three rods carrying three alternating current (AC) voltages symmetrically delayed, called a tripole, was used as a linear ion trap (LIT) and studied by computer simulations. Radial containment of ions was also demonstrated with the pseudopotential which was calculated by approximating the tripole electric potential to the multipoles expansion. This work found a new analyte concentrator, which performs effective ion ejection, and is suitable for use with time-of-flight mass spectrometry. The efficiency of the overall process from the trapping until the ejection was higher than 90%, although some degree of ion spatial and kinetic energy spread which can be corrected with a reflectron was obtained. The reason for the ejection of this tripole linear ion trap (tLIT) lies in the high space available between the rods. The ejection is optimized with the application of focusing voltages, especially suitable for a tripole symmetry (one electrode has a pulse offset voltage and the other two have a fraction of that pulse). The beam is finally well parallelized with a rectangular Einzel lens.


Assuntos
Espectrometria de Massas/instrumentação , Algoritmos , Simulação por Computador , Desenho Assistido por Computador , Campos Eletromagnéticos , Desenho de Equipamento , Íons , Software
19.
J Am Soc Mass Spectrom ; 18(3): 413-21, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17142055

RESUMO

A novel three rod (tripole) ion optic to which three AC voltages with symmetrically delayed phase shifts were applied to each electrode. We studied its ion guiding, focusing, and mass filtering capabilities by SIMION ver. 7.0 computer simulations. An electric field mathematical model was developed to calculate the pseudopotential of the tripole radial AC force. The tripole showed stable ion guiding for wide ranges of AC amplitude; better collisional focusing than hexapole and octapole and similar focusing as quadrupole (rod pole). Also, the ion optic clearly showed interesting mass filtering potential when the phase shift was asymmetrically delayed. The symmetric shape of the pseudopotential field explained the tripole ion guiding and focusing capabilities. For mass filtering, the pseudopotential was asymmetric and its effect was balanced with DC voltage to separate the ions, depending in their masses. The resolution was much lower than quadrupole but useful when rough filtering was required.


Assuntos
Espectrometria de Massas/instrumentação , Simulação por Computador , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA