Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2652, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156776

RESUMO

Despite a century of research, our understanding of cement dissolution and precipitation processes at early ages is very limited. This is due to the lack of methods that can image these processes with enough spatial resolution, contrast and field of view. Here, we adapt near-field ptychographic nanotomography to in situ visualise the hydration of commercial Portland cement in a record-thick capillary. At 19 h, porous C-S-H gel shell, thickness of 500 nm, covers every alite grain enclosing a water gap. The spatial dissolution rate of small alite grains in the acceleration period, ∼100 nm/h, is approximately four times faster than that of large alite grains in the deceleration stage, ∼25 nm/h. Etch-pit development has also been mapped out. This work is complemented by laboratory and synchrotron microtomographies, allowing to measure the particle size distributions with time. 4D nanoimaging will allow mechanistically study dissolution-precipitation processes including the roles of accelerators and superplasticizers.

2.
Materials (Basel) ; 14(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34832365

RESUMO

Cement hydration is a very complex set of processes. The evolution of the crystalline phases during hydration can be accurately followed by X-ray powder diffraction data evaluated by the Rietveld method. However, accurate measurements of some microstructural features, including porosity and amorphous content developments, are more challenging. Here, we combine laboratory X-ray powder diffraction and computed microtomography (µCT) to better understand the results of the µCT analyses. Two pastes with different water-cement ratios, 0.45 and 0.65, filled within capillaries of two sizes, ϕ = 0.5 and 1.0 mm, were analysed at 50 days of hydration. It was shown that within the spatial resolution of the measured µCTs, ~2 µm, the water capillary porosity was segmented within the hydrated component fraction. The unhydrated part could be accurately quantified within 2 vol% error. This work is a first step to accurately determining selected hydration features like the hydration degree of amorphous phases of supplementary cementitious materials within cement blends.

3.
ACS Appl Mater Interfaces ; 13(13): 15279-15291, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764728

RESUMO

Phase transformation dynamics and proton conduction properties are reported for cationic layer-featured coordination polymers derived from the combination of lanthanide ions (Ln3+) with nitrilo-tris(methylenephosphonic acid) (H6NMP) in the presence of sulfate ions. Two families of materials are isolated and structurally characterized, i.e., [Ln2(H4NMP)2(H2O)4](HSO4)2·nH2O (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb; n = 4-5, Series I) and [Ln(H5NMP)]SO4·2H2O (Ln = Pr, Nd, Eu, Gd, Tb; Series II). Eu/Tb bimetallic solid solutions are also prepared for photoluminescence studies. Members of families I and II display high proton conductivity (10-3 and 10-2 S·cm-1 at 80 °C and 95% relative humidity) and are studied as fillers for Nafion-based composite membranes in PEMFCs, under operating conditions. Composite membranes exhibit higher power and current densities than the pristine Nafion membrane working in the range of 70-90 °C and 100% relative humidity and with similar proton conductivity.

4.
Dalton Trans ; 49(13): 3981-3988, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-31942881

RESUMO

Synthesis redesign and derivatisation of Fe(ii)-hydroxyphosphonoacetate, incorporating different ammonia loads and M(ii) isomorphic substitutions (M = Mn, Co and Zn), have been implemented. The NH3 adsorption led to materials with enhanced proton conductivity, up to ∼10-3 S cm-1, although it caused a progressive amorphization. The Pair Distribution Function (PDF) analysis for this material confirmed the loss of crystallinity but the local order appeared to be maintained. The parent compound was shown to be an efficient photocatalyst for phenol, 4-chlorophenol and methylene blue even under mild conditions, with TOC removal of 75-90% at 50-150 min of reaction. The M(ii)-substituted derivatives displayed similar behaviour in properties, and therefore their multifunctional character, as the parent compound, although with slightly reduced capabilities.

5.
Inorg Chem ; 58(17): 11522-11533, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31403791

RESUMO

The reaction of MoO42- with a number of phosphonic acids [bis(phosphonomethyl)glycine, R,S-hydroxyphosphonoacetic acid, 1-hydroxyethane-1,1-diphosphonic acid, phenylphosphonic acid, aminotris(methylene phosphonic acid), and 1,2-ethylenediphosphonic acid] under oxidizing (H2O2) hydrothermal conditions at low pH leads to rupture of the P-C bond, release of orthophosphate ions, and generation of the octanuclear, phosphate-bridged, polyoxometalate molybdenum cluster (NH4)5[Mo8(OH)2O24(µ8-PO4)](H2O)2 (POMPhos). This cluster has been fully characterized and its structure determined. It was studied as a proton conductor, giving moderate values of σ = 2.13 × 10-5 S·cm-1 (25 °C) and 1.17 × 10-4 S·cm-1 (80 °C) at 95% relative humidity, with Ea = 0.27 eV. The POMPhos cluster was then thermally treated at 310 °C, yielding (NH4)2.6(H3O)0.4(PO4Mo12O36) together with an amorphous impurity containing phosphate and molybdenum oxide. This product was also studied for its proton conductivity properties, giving rise to an impressively high value of σ = 2.43 × 10-3 S·cm-1 (25 °C) and 6.67 × 10-3 S·cm-1 (80 °C) at 95% relative humidity, 2 orders of magnitude higher than those corresponding to the "as-synthesized" solid. The utilization of POMPhos in catalytic reduction of different sulfoxides was also evaluated. POMPhos acts as an efficient homogeneous catalyst for the reduction of diphenyl sulfoxide to diphenyl sulfide, as a model reaction. Pinacol was used as a low-cost, environmentally friendly, and highly efficient reducing agent. The effects of different reaction parameters were investigated, namely the type of solvent and reducing agent, presence of acid promoter, reaction time and temperature, loading of catalyst and pinacol, allowing to achieve up to 84-99% yields of sulfide products under optimized conditions. Substrate scope was tested on the examples of diaryl, alkylaryl, dibenzyl, and dialkyl sulfoxides and excellent product yields were obtained.

6.
Inorg Chem ; 57(17): 10656-10666, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30102028

RESUMO

The synthesis, structural characterization, topological analysis, proton conductivity, and catalytic properties are reported of two Cu(II)-based compounds, namely a dinuclear Cu(II) complex [Cu2(µ-VPA)2(phen)2(H2O)2]·8H2O (1) (H2VPA = vinylphosphonic acid, phen = 1,10-phenanthroline) and a 1D coordination polymer [Cu(µ-SO4)(phen)(H2O)2]∞ (2). Their structural features and H-bonding interactions were investigated in detail, showing that the metal-organic structures of 1 and 2 are extended by multiple hydrogen bonds to more complex 2D or 1D H-bonded architectures with the kgd [Shubnikov plane net (3.6.3.6)/dual] and SP 1-periodic net (4,4)(0,2) topology, respectively. These nets are primarily driven by the H-bonding interactions involving water ligands and H2O molecules of crystallization; besides, the (H2O)4/(H2O)5 clusters were identified in 1. Both 1 and 2 are moderate proton conductors, with proton conductivity values, σ = 3.65 × 10-6 and 3.94 × 10-6 S·cm-1, respectively (measured at 80 °C and 95% relative humidity). Compounds 1 and 2 are also efficient homogeneous catalysts for the mild oxidative functionalization of C5-C8 cycloalkanes (cyclopentane, cyclohexane, cycloheptane, and cyclooctane), namely for the oxidation by H2O2 to give cyclic alcohols and ketones and the hydrocarboxylation by CO/H2O and S2O82- to the corresponding cycloalkanecarboxylic acids as major products. The catalytic reactions proceed under mild conditions (50-60 °C) in aqueous acetonitrile medium, resulting in up to 34% product yields based on cycloalkane substrate.

7.
Inorg Chem ; 55(15): 7414-24, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27416056

RESUMO

The synthesis, structural characterization, luminescence properties, and proton conduction performance of a new family of isostructural cationic 2D layered compounds are reported. These have the general formula [Ln(H4NMP)(H2O)2]Cl·2H2O [Ln = La(3+), Pr(3+), Sm(3+), Eu(3+), Gd(3+), Tb(3+), Dy(3+), Ho(3+), H6NMP = nitrilotris(methylphosphonic acid)], and contain Cl(-) as the counterion. In the case of Ce(3+), a 1D derivative, [Ce2(H3NMP)2(H2O)4]·4.5H2O, isostructural with the known lanthanum compound has been isolated by simply crystallization at room temperature. The octa-coordinated environment of Ln(3+) in 2D compounds is composed by six oxygen atoms from three different ligands and two oxygens from each bound water. Two of the three phosphonate groups act as both chelating and bridging linkers, while the third phosphonate group acts solely as a bridging moiety. The materials are stable at low relative humidity at less at 170 °C. However, at high relative humidity transform to other chloride-free phases, including the 1D structure. The proton conductivity of the 1D materials varies in a wide range, the highest values corresponding to the La derivative (σ ≈ 2 × 10(-3) S·cm(-1) at RH 95% and 80 °C). A lower proton conductivity, 3 × 10(-4) S·cm(-1), was measured for [Gd(H4NMP)(H2O)2]Cl·2H2O at 80 °C, which remains stable under the work conditions used. Absorption and luminescence spectra were recorded for selected [Ln(H4NMP)(H2O)2]Cl·2H2O compounds. In all of them, the observed transitions are attributed solely to f-f transitions of the lanthanide ions present, as the H4NMP(2-) organic group has no measurable absorption or luminescence properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA