Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 4(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389686

RESUMO

Absence of dystrophin, an essential sarcolemmal protein required for muscle contraction, leads to the devastating muscle-wasting disease Duchenne muscular dystrophy. Dystrophin has an actin-binding domain, which binds and stabilises filamentous-(F)-actin, an integral component of the RhoA-actin-serum-response-factor-(SRF) pathway. This pathway plays a crucial role in circadian signalling, whereby the suprachiasmatic nucleus (SCN) transmits cues to peripheral tissues, activating SRF and transcription of clock-target genes. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised dystrophin loss causes circadian deficits. We show for the first time alterations in the RhoA-actin-SRF-signalling pathway, in dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios, altered MRTF levels, dysregulated core-clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from Duchenne patients harbouring an array of mutations. Furthermore, we show dystrophin is absent in the SCN of dystrophic mice which display disrupted circadian locomotor behaviour, indicative of disrupted SCN signalling. Therefore, dystrophin is an important component of the RhoA-actin-SRF pathway and novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation.


Assuntos
Distrofina/metabolismo , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Actinas/metabolismo , Animais , Linhagem Celular , Distrofina/genética , Camundongos , Mioblastos Esqueléticos/metabolismo , Utrofina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
2.
ACS Nano ; 15(2): 3212-3227, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33470092

RESUMO

The ability to track extracellular vesicles (EVs) in vivo without influencing their biodistribution is a key requirement for their successful development as drug delivery vehicles and therapeutic agents. Here, we evaluated the effect of five different optical and nuclear tracers on the in vivo biodistribution of EVs. Expi293F EVs were labeled using either a noncovalent fluorescent dye DiR, or covalent modification with 111indium-DTPA, or bioengineered with fluorescent (mCherry) or bioluminescent (Firefly and NanoLuc luciferase) proteins fused to the EV marker, CD63. To focus specifically on the effect of the tracer, we compared EVs derived from the same cell source and administered systemically by the same route and at equal dose into tumor-bearing BALB/c mice. 111Indium and DiR were the most sensitive tracers for in vivo imaging of EVs, providing the most accurate quantification of vesicle biodistribution by ex vivo imaging of organs and analysis of tissue lysates. Specifically, NanoLuc fused to CD63 altered EV distribution, resulting in high accumulation in the lungs, demonstrating that genetic modification of EVs for tracking purposes may compromise their physiological biodistribution. Blood kinetic analysis revealed that EVs are rapidly cleared from the circulation with a half-life below 10 min. Our study demonstrates that radioactivity is the most accurate EV tracking approach for a complete quantitative biodistribution study including pharmacokinetic profiling. In conclusion, we provide a comprehensive comparison of fluorescent, bioluminescent, and radioactivity approaches, including dual labeling of EVs, to enable accurate spatiotemporal resolution of EV trafficking in mice, an essential step in developing EV therapeutics.


Assuntos
Vesículas Extracelulares , Traçadores Radioativos , Animais , Vesículas Extracelulares/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual
3.
Nanoscale ; 11(14): 6990-7001, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30916672

RESUMO

Extracellular vesicles (EVs) mediate cellular communication through the transfer of active biomolecules, raising interest in using them as biological delivery vehicles for therapeutic drugs. For drug delivery applications, it is important to understand the intrinsic safety and toxicity liabilities of EVs. Nanoparticles, including EVs, typically demonstrate significant accumulation in the liver after systemic administration in vivo. We confirmed uptake of EVs derived from Expi293F cells into HepG2 cells and did not detect any signs of hepatotoxicity measured by cell viability, functional secretion of albumin, plasma membrane integrity, and mitochondrial and lysosomal activity even at high exposures of up to 5 × 1010 EVs per mL. Whole genome transcriptome analysis was used to measure potential effects on the gene expression in the recipient HepG2 cells at 24 h following exposure to EVs. Only 0.6% of all genes were found to be differentially expressed displaying less than 2-fold expression change, with genes related to inflammation or toxicity being unaffected. EVs did not trigger any proinflammatory cytokine response in HepG2 cells. However, minor changes were noted in human blood for interleukin (IL)-8, IL-6, and monocyte chemotactic protein 1 (MCP-1). Administration of 5 × 1010 Expi293F-derived EVs to BALB/c mice did not result in any histopathological changes or increases of liver transaminases or cytokine levels, apart from a modest increase in keratinocyte chemoattractant (KC). The absence of any significant toxicity associated with EVs in vitro and in vivo supports the prospective use of EVs for therapeutic applications and for drug delivery.


Assuntos
Vesículas Extracelulares/fisiologia , Fígado/patologia , Animais , Citocinas/metabolismo , Vesículas Extracelulares/transplante , Células HEK293 , Células Hep G2 , Humanos , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Albumina Sérica/metabolismo , Transaminases/metabolismo , Transcriptoma
4.
Toxicol Sci ; 163(1): 70-78, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325107

RESUMO

Nucleoside analogs with 2'-modified sugar moieties are often used to improve the RNA target affinity and nuclease resistance of therapeutic oligonucleotides in preclinical and clinical development. Despite their enhanced nuclease resistance, oligonucleotides could slowly degrade releasing nucleoside analogs that have the potential to become phosphorylated and incorporated into cellular DNA and RNA. For the first time, the phosphorylation and DNA/RNA incorporation of 2'-O-(2-methoxyethyl) (2'-O-MOE) nucleoside analogs have been investigated. Using liquid chromatography/tandem mass spectrometry, we showed that enzymes in the nucleotide salvage pathway including deoxycytidine kinase (dCK) and thymidine kinase (TK1) displayed poor reactivity toward 2'-O-MOE nucleoside analogs. On the other hand, 2'-fluoro (F) nucleosides, regardless of the nucleobase, were efficiently phosphorylated to their monophosphate forms by dCK and TK1. Consistent with their efficient phosphorylation by dCK and TK1, 2'-F nucleoside analogs were incorporated into cellular DNA and RNA while no incorporation was detected with 2'-O-MOE nucleoside analogs. In conclusion, these data suggest that the inability of dCK and TK1 to create the monophosphates of 2'-O-MOE nucleoside analogs reduces the risk of their incorporation into cellular DNA and RNA.


Assuntos
Núcleo Celular/efeitos dos fármacos , DNA/metabolismo , Genoma Humano , Nucleosídeos/farmacologia , RNA/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Desoxicitidina Quinase/metabolismo , Humanos , Nucleosídeos/química , Fosforilação , Especificidade por Substrato , Timidina Quinase/metabolismo
5.
Toxicol Sci ; 155(1): 101-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27660205

RESUMO

Triplex forming oligonucleotides (TFOs) bind in the major groove of DNA duplex in a sequence-specific manner imparted by Hoogsteen hydrogen bonds. There have been several reports demonstrating the ability of guanine-rich TFOs to induce targeted mutagenesis on an exogenous plasmid or an endogenous chromosomal locus. In particular, a 30mer guanine-rich triplex forming oligonucleotide, AG30, optimally designed to target the supFG1 reporter gene was reported to be mutagenic in the absence of DNA reactive agents in cultured cells and in vivo Here, we investigated the mutagenic potential of AG30 using the supFG1 shuttle vector forward mutation assay under physiological conditions. We also assessed the triplex binding potential of AG30 alongside cytotoxic and mutagenic assessment. In a cell free condition, AG30 was able to bind its polypurine target site in the supFG1 gene in the absence of potassium chloride and also aligned with a 5-fold increase in the mutant frequency when AG30 was pre-incubated with the supFG1 plasmid in the absence of potassium prior to transfection into COS-7 cells. However, when we analyzed triplex formation of AG30 and the supFG1 target duplex at physiological potassium levels, triplex formation was inhibited due to the formation of competing secondary structures. Subsequent assessment of mutant frequency under physiological conditions, by pre-transfecting COS-7 cells with the supFG1 plasmid prior to AG30 treatment led to a very small increase (1.4-fold) in the mutant frequency. Transfection of cells with even higher concentrations of AG30 did result in an elevated mutagenic response but this was also seen with a scrambled sequence, and was therefore considered unlikely to be biologically relevant as an associated increase in cytotoxicity was also apparent. Our findings also provide further assurance on the low potential of triplex-mediated mutation as a consequence of unintentional genomic DNA binding by therapeutic antisense oligonucleotides.


Assuntos
Guanina/metabolismo , Mutagênicos/farmacologia , Oligonucleotídeos/farmacologia , Animais , Células COS , Chlorocebus aethiops , Vetores Genéticos , Mutação , Ligação Proteica
7.
Proc Natl Acad Sci U S A ; 113(39): 10962-7, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621445

RESUMO

The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Peptídeos/química , Envelhecimento , Alelos , Sequência de Aminoácidos , Biomarcadores/sangue , Linhagem Celular , Humanos , Movimento , Atrofia Muscular Espinal/sangue , Atrofia Muscular Espinal/patologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacologia , Fenótipo , Splicing de RNA/genética , Análise de Sobrevida , Proteína 2 de Sobrevivência do Neurônio Motor/genética
8.
Sci Rep ; 5: 17014, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26594036

RESUMO

There is currently an urgent need for biomarkers that can be used to monitor the efficacy of experimental therapies for Duchenne Muscular Dystrophy (DMD) in clinical trials. Identification of novel protein biomarkers has been limited due to the massive complexity of the serum proteome and the presence of a small number of very highly abundant proteins. Here we have utilised an aptamer-based proteomics approach to profile 1,129 proteins in the serum of wild-type and mdx (dystrophin deficient) mice. The serum levels of 96 proteins were found to be significantly altered (P < 0.001, q < 0.01) in mdx mice. Additionally, systemic treatment with a peptide-antisense oligonucleotide conjugate designed to induce Dmd exon skipping and recover dystrophin protein expression caused many of the differentially abundant serum proteins to be restored towards wild-type levels. Results for five leading candidate protein biomarkers (Pgam1, Tnni3, Camk2b, Cycs and Adamts5) were validated by ELISA in the mouse samples. Furthermore, ADAMTS5 was found to be significantly elevated in human DMD patient serum. This study has identified multiple novel, therapy-responsive protein biomarkers in the serum of the mdx mouse with potential utility in DMD patients.


Assuntos
Proteínas ADAM/genética , Aptâmeros de Nucleotídeos/farmacologia , Biomarcadores Farmacológicos/sangue , Distrofina/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/farmacologia , Proteínas ADAM/sangue , Proteína ADAMTS5 , Animais , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/sangue , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Modelos Animais de Doenças , Distrofina/agonistas , Distrofina/deficiência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Monoéster Fosfórico Hidrolases/sangue , Monoéster Fosfórico Hidrolases/genética , Proteínas Quinases/sangue , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Proteômica/métodos
9.
Nano Lett ; 15(7): 4364-73, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26042553

RESUMO

Antisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD). We show that PPMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. PPMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations, PPMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in vitro. In vivo, the activity of PPMO was significantly decreased in SCARA1 knockout mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2'OMe as shown by competitive inhibition and colocalization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that PPMO and tcDNA have higher binding profiles to the receptor compared to 2'OMe. These results demonstrate receptor-mediated uptake for a range of therapeutic ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.


Assuntos
Nanopartículas/química , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacocinética , Receptores Depuradores Classe A/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Éxons , Terapia Genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Micelas , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Receptores Depuradores Classe A/genética
10.
Sci Rep ; 5: 11632, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26113184

RESUMO

Duchenne muscular dystrophy (DMD) is caused by absence of the integral structural protein, dystrophin, which renders muscle fibres susceptible to injury and degeneration. This ultimately results in cardiorespiratory dysfunction, which is the predominant cause of death in DMD patients, and highlights the importance of therapeutic targeting of the cardiorespiratory system. While there is some evidence to suggest that restoring dystrophin in the diaphragm improves both respiratory and cardiac function, the role of the diaphragm is not well understood. Here using exon skipping oligonucleotides we predominantly restored dystrophin in the diaphragm and assessed cardiac function by MRI. This approach reduced diaphragmatic pathophysiology and markedly improved diaphragm function but did not improve cardiac function or pathophysiology, with or without exercise. Interestingly, exercise resulted in a reduction of dystrophin protein and exon skipping in the diaphragm. This suggests that treatment regimens may require modification in more active patients. In conclusion, whilst the diaphragm is an important respiratory muscle, it is likely that dystrophin needs to be restored in other tissues, including multiple accessory respiratory muscles, and of course the heart itself for appropriate therapeutic outcomes. This supports the requirement of a body-wide therapy to treat DMD.


Assuntos
Diafragma/fisiopatologia , Modelos Animais de Doenças , Coração/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Sequência de Aminoácidos , Animais , Fator Natriurético Atrial , Western Blotting , Diafragma/diagnóstico por imagem , Diafragma/metabolismo , Distrofina/genética , Distrofina/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Morfolinos/química , Morfolinos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/genética , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Condicionamento Físico Animal/fisiologia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Radiografia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Mol Ther ; 23(8): 1341-1348, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25959011

RESUMO

The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD.


Assuntos
Distrofina/genética , Éxons , Miostatina/genética , Oligonucleotídeos Antissenso/química , Fases de Leitura Aberta , Processamento Alternativo , Animais , Animais Recém-Nascidos , Arginina/química , Diafragma/metabolismo , Modelos Animais de Doenças , Distrofina/metabolismo , Terapia Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Morfolinos/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Miostatina/metabolismo , Necrose , Peptídeos/química , Fases de Leitura
12.
Sci Rep ; 5: 8986, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25758104

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder caused by mutations in the Dmd gene. In addition to skeletal muscle wasting, DMD patients develop cardiomyopathy, which significantly contributes to mortality. Antisense oligonucleotides (AOs) are a promising DMD therapy, restoring functional dystrophin protein by exon skipping. However, a major limitation with current AOs is the absence of dystrophin correction in heart. Pip peptide-AOs demonstrate high activity in cardiac muscle. To determine their therapeutic value, dystrophic mdx mice were subject to forced exercise to model the DMD cardiac phenotype. Repeated peptide-AO treatments resulted in high levels of cardiac dystrophin protein, which prevented the exercised induced progression of cardiomyopathy, normalising heart size as well as stabilising other cardiac parameters. Treated mice also exhibited significantly reduced cardiac fibrosis and improved sarcolemmal integrity. This work demonstrates that high levels of cardiac dystrophin restored by Pip peptide-AOs prevents further deterioration of cardiomyopathy and pathology following exercise in dystrophic DMD mice.


Assuntos
Cardiomiopatias/etiologia , Distrofina/genética , Morfolinos/administração & dosagem , Distrofia Muscular de Duchenne/complicações , Condicionamento Físico Animal/efeitos adversos , Animais , Biomarcadores , Cardiomiopatias/diagnóstico , Cardiomiopatias/metabolismo , Cardiomiopatias/prevenção & controle , Cardiomiopatias/terapia , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/prevenção & controle , Cardiomiopatia Dilatada/terapia , Modelos Animais de Doenças , Distrofina/metabolismo , Fibrose , Expressão Gênica , Humanos , Imagem Cinética por Ressonância Magnética , Camundongos , Camundongos Endogâmicos mdx , Miocárdio/metabolismo , Miocárdio/patologia , Fenótipo
13.
Toxicol Sci ; 145(1): 169-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25711235

RESUMO

The degradation of phosphorothioate oligonucleotides (PS-ONDs) and the release of potentially genotoxic modified mononucleotides raise a safety concern for OND-based therapeutics. Deoxyadenosine monophosphorothioate (dAMPαS), a PS nucleotide analog, has been reported to be a potent in vitro mutagen at the thymidine kinase (TK) locus in human TK6 lymphoblastoid cells. This led us to explore the mechanism behind the apparent positive response induced by dAMPαS in the TK gene-mutation assay in TK6 cells. In this work, treatment of TK6 cells with dAMPαS produced a dose-dependent increase in cytotoxicity and mutant frequency at the TK locus. Surprisingly, when the colonies from dAMPαS were re-challenged with the selective agent trifluorothymidine (TFT), the TFT-resistant phenotype was lost. Moreover, dAMPαS-induced colonies displayed distinct growth kinetics and required longer incubation time than 4-nitroquinoline-1-oxide-induced colonies to start growing. Treatment of TK6 cells with dAMPαS induced cell cycle arrest at the G1 phase, enabling cells to grow, and form a colony after the efficacy of TFT in the culture medium was lost. Our findings suggest that a fraction of parental "nonmutant" TK6 cells escaped the toxicity of TFT, possibly via G1 arrest, and resumed growth after the degradation of TFT. We conclude that dAMPαS did not induce real TFT-resistant mutants and caution should be taken with interpretation of mutation data from TK gene-mutation assay in TK6 cells when assessing modified nucleotides.


Assuntos
Mutagênicos/toxicidade , Nucleotídeos/toxicidade , Compostos Organofosforados/toxicidade , Linhagem Celular , Humanos
14.
Nucleic Acid Ther ; 25(2): 65-77, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25594433

RESUMO

Oligonucleotide analogs have provided novel therapeutics targeting various disorders. However, their poor cellular uptake remains a major obstacle for their clinical development. Negatively charged oligonucleotides, such as 2'-O-Methyl RNA and locked nucleic acids have in recent years been delivered successfully into cells through complex formation with cationic polymers, peptides, liposomes, or similar nanoparticle delivery systems. However, due to the lack of electrostatic interactions, this promising delivery method has been unsuccessful to date using charge-neutral oligonucleotide analogs. We show here that lipid-functionalized cell-penetrating peptides can be efficiently exploited for cellular transfection of the charge-neutral oligonucleotide analog phosphorodiamidate morpholino. The lipopeptides form complexes with splice-switching phosphorodiamidate morpholino oligonucleotide and can be delivered into clinically relevant cell lines that are otherwise difficult to transfect while retaining biological activity. To our knowledge, this is the first study to show delivery through complex formation of biologically active charge-neutral oligonucleotides by cationic peptides.


Assuntos
Agamaglobulinemia/tratamento farmacológico , Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Morfolinos/administração & dosagem , Atrofia Muscular Espinal/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Nanopartículas , Peptídeos/administração & dosagem , Sequência de Aminoácidos , Animais , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Dados de Sequência Molecular , Morfolinos/uso terapêutico , Peptídeos/química
15.
Nucleic Acids Res ; 43(1): 29-39, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25468897

RESUMO

The potential for therapeutic application of splice-switching oligonucleotides (SSOs) to modulate pre-mRNA splicing is increasingly evident in a number of diseases. However, the primary drawback of this approach is poor cell and in vivo oligonucleotide uptake efficacy. Biological activities can be significantly enhanced through the use of synthetically conjugated cationic cell penetrating peptides (CPPs). Studies to date have focused on the delivery of a single SSO conjugated to a CPP, but here we describe the conjugation of two phosphorodiamidate morpholino oligonucleotide (PMO) SSOs to a single CPP for simultaneous delivery and pre-mRNA targeting of two separate genes, exon 23 of the Dmd gene and exon 5 of the Acvr2b gene, in a mouse model of Duchenne muscular dystrophy. Conjugations of PMOs to a single CPP were carried out through an amide bond in one case and through a triazole linkage ('click chemistry') in the other. The most active bi-specific CPP-PMOs demonstrated comparable exon skipping levels for both pre-mRNA targets when compared to individual CPP-PMO conjugates both in cell culture and in vivo in the mdx mouse model. Thus, two SSOs with different target sequences conjugated to a single CPP are biologically effective and potentially suitable for future therapeutic exploitation.


Assuntos
Peptídeos Penetradores de Células/química , Morfolinos/química , Distrofia Muscular de Duchenne/genética , Splicing de RNA , Receptores de Activinas Tipo II/genética , Animais , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Distrofina/genética , Éxons , Camundongos , Camundongos Endogâmicos mdx , Morfolinos/síntese química
16.
J Clin Invest ; 124(9): 4067-81, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25105368

RESUMO

X-linked agammaglobulinemia (XLA) is an inherited immunodeficiency that results from mutations within the gene encoding Bruton's tyrosine kinase (BTK). Many XLA-associated mutations affect splicing of BTK pre-mRNA and severely impair B cell development. Here, we assessed the potential of antisense, splice-correcting oligonucleotides (SCOs) targeting mutated BTK transcripts for treating XLA. Both the SCO structural design and chemical properties were optimized using 2'-O-methyl, locked nucleic acid, or phosphorodiamidate morpholino backbones. In order to have access to an animal model of XLA, we engineered a transgenic mouse that harbors a BAC with an authentic, mutated, splice-defective human BTK gene. BTK transgenic mice were bred onto a Btk knockout background to avoid interference of the orthologous mouse protein. Using this model, we determined that BTK-specific SCOs are able to correct aberrantly spliced BTK in B lymphocytes, including pro-B cells. Correction of BTK mRNA restored expression of functional protein, as shown both by enhanced lymphocyte survival and reestablished BTK activation upon B cell receptor stimulation. Furthermore, SCO treatment corrected splicing and restored BTK expression in primary cells from patients with XLA. Together, our data demonstrate that SCOs can restore BTK function and that BTK-targeting SCOs have potential as personalized medicine in patients with XLA.


Assuntos
Agamaglobulinemia/terapia , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Oligonucleotídeos/genética , Proteínas Tirosina Quinases/fisiologia , Splicing de RNA , Tirosina Quinase da Agamaglobulinemia , Agamaglobulinemia/enzimologia , Animais , Linfócitos B/metabolismo , Células Cultivadas , Doenças Genéticas Ligadas ao Cromossomo X/enzimologia , Humanos , Luciferases/genética , Camundongos Transgênicos , Monócitos/enzimologia , Proteínas Tirosina Quinases/genética
17.
Mol Ther Nucleic Acids ; 1: e62, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23250360

RESUMO

The knockdown of myostatin, a negative regulator of skeletal muscle mass may have important implications in disease conditions accompanied by muscle mass loss like cancer, HIV/AIDS, sarcopenia, muscle atrophy, and Duchenne muscular dystrophy (DMD). In DMD patients, where major muscle loss has occurred due to a lack of dystrophin, the therapeutic restoration of dystrophin expression alone in older patients may not be sufficient to restore the functionality of the muscles. We recently demonstrated that phosphorodiamidate morpholino oligomers (PMOs) can be used to re-direct myostatin splicing and promote the expression of an out-of-frame transcript so reducing the amount of the synthesized myostatin protein. Furthermore, the systemic administration of the same PMO conjugated to an octaguanidine moiety (Vivo-PMO) led to a significant increase in the mass of soleus muscle of treated mice. Here, we have further optimized the use of Vivo-PMO in normal mice and also tested the efficacy of the same PMO conjugated to an arginine-rich cell-penetrating peptide (B-PMO). Similar experiments conducted in mdx dystrophic mice showed that B-PMO targeting myostatin is able to significantly increase the tibialis anterior (TA) muscle weight and when coadministered with a B-PMO targeting the dystrophin exon 23, it does not have a detrimental interaction. This study confirms that myostatin knockdown by exon skipping is a potential therapeutic strategy to counteract muscle wasting conditions and dual myostatin and dystrophin skipping has potential as a therapy for DMD.Molecular Therapy - Nucleic Acids (2012) 1, e62; doi:10.1038/mtna.2012.54; published online 18 December 2012.

18.
Methods Mol Biol ; 867: 365-78, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22454073

RESUMO

The chemistry of the oligonucleotide backbone is crucial to obtaining high activity in vivo in exon skipping applications. Apart from the ability to bind strongly and sequence-specifically to pre-mRNA targets, the type of backbone also influences cell delivery, in vivo pharmacology, bio-distribution, toxicology, and ultimately the therapeutic use in humans. Reviewed here are classes of oligonucleotide commonly used for exon skipping applications, namely negatively charged backbones typified by RNA analogues having 2'-O-substitution and a phosphorothioate linkage and charge-neutral backbones such as PNA and PMO. Also discussed are peptide conjugates of PNA and PMO that enhance cellular and in vivo delivery and their potential for drug development. Finally, the prospects for development of other analogue types in exon skipping applications are outlined.


Assuntos
Éxons , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Processamento Alternativo , Animais , Humanos , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/genética , Peptídeos/química , Peptídeos/genética , Precursores de RNA/genética
19.
Mol Ther Nucleic Acids ; 1: e38, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23344180

RESUMO

Antisense oligonucleotides (AOs) are currently the most promising therapeutic intervention for Duchenne muscular dystrophy (DMD). AOs modulate dystrophin pre-mRNA splicing, thereby specifically restoring the dystrophin reading frame and generating a truncated but semifunctional dystrophin protein. Challenges in the development of this approach are the relatively poor systemic AO delivery and inefficient dystrophin correction in affected non-skeletal muscle tissues, including the heart. We have previously reported impressive heart activity including high-splicing efficiency and dystrophin restoration following a single administration of an arginine-rich cell-penetrating peptide (CPPs) conjugated to a phosphorodiamidate morpholino oligonucleotide (PMO): Pip5e-PMO. However, the mechanisms underlying this activity are poorly understood. Here, we report studies involving single dose administration (12.5 mg/kg) of derivatives of Pip5e-PMO, consecutively assigned as Pip6-PMOs. These peptide-PMOs comprise alterations to the central hydrophobic core of the Pip5e peptide and illustrate that certain changes to the peptide sequence improves its activity; however, partial deletions within the hydrophobic core abolish its efficiency. Our data indicate that the hydrophobic core of the Pip sequences is critical for PMO delivery to the heart and that specific modifications to this region can enhance activity further. The results have implications for therapeutic PMO development for DMD.

20.
Mol Ther ; 19(7): 1295-303, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21505427

RESUMO

Induced splice modulation of pre-mRNAs shows promise to correct aberrant disease transcripts and restore functional protein and thus has therapeutic potential. Duchenne muscular dystrophy (DMD) results from mutations that disrupt the DMD gene open reading frame causing an absence of dystrophin protein. Antisense oligonucleotide (AO)-mediated exon skipping has been shown to restore functional dystrophin in mdx mice and DMD patients treated intramuscularly in two recent phase 1 clinical trials. Critical to the therapeutic success of AO-based treatment will be the ability to deliver AOs systemically to all affected tissues including the heart. Here, we report identification of a series of transduction peptides (Pip5) as AO conjugates for enhanced systemic and particularly cardiac delivery. One of the lead peptide-AO conjugates, Pip5e-AO, showed highly efficient exon skipping and dystrophin production in mdx mice with complete correction of the aberrant DMD transcript in heart, leading to >50% of the normal level of dystrophin in heart. Mechanistic studies indicated that the enhanced activity of Pip5e-phosphorodiamidate morpholino (PMO) is partly explained by more efficient nuclear delivery. Pip5 series derivatives therefore have significant potential for advancing the development of exon skipping therapies for DMD and may have application for enhanced cardiac delivery of other biotherapeutics.


Assuntos
Éxons/genética , Miocárdio/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA