Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 510, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844838

RESUMO

BACKGROUND: Optimum planting date and appropriate fertilizer module are essential facets of chrysanthemum cultivation, to enhance quality yield, and improve soil health. A field-based study was undertaken over multiple growing seasons in 2022 and 2023, where six different planting dates, viz., P1:June 15, P2:June 30, P3:July 15, P4:July 30, P5:August 15 and P6:August 30 and two fertilizer modules, FM1:Jeevamrit @ 30 ml plant-1 and FM2:NPK @ 30 g m-2 were systematically examined using a Randomized Block Design (factorial), replicated thrice. RESULTS: P6 planting resulted in early bud formation (44.03 days) and harvesting stage (90.78 days). Maximum plant height (79.44 cm), plant spread (34.04 cm), cut stem length (68.40 cm), flower diameter (7.83 cm), stem strength (19.38˚), vase life (14.90 days), flowering duration (24.08 days), available soil N (314 kg ha-1), available P (37 kg ha-1), available K (347 kg ha-1), bacterial count (124.87 × 107 cfu g-1 soil), actinomycetes count (60.72 × 102 cfu g-1 soil), fungal count (30.95 × 102 cfu g-1 soil), microbial biomass (48.79 µg g-1 soil), dehydrogenase enzyme (3.64 mg TPF h-1 g-1 soil) and phosphatase enzyme (23.79 mol PNP h-1 g-1 soil) was recorded in P1 planting. Among the fertilization module, minimum days to bud formation (74.94 days) and days to reach the harvesting stage (120.95 days) were recorded with the application of NPK @30 g m-2. However, maximum plant height (60.62 cm), plant spread (23.10 cm), number of cut stems m-2 (43.88), cut stem length (51.34 cm), flower diameter (6.92 cm), stem strength (21.24˚), flowering duration (21.75 days), available soil N (317 kg ha-1), available P (37 kg ha-1) and available K (349 kg ha-1) were also recorded with the application of NPK @300 kg ha-1. Maximum vase life (13.87 days), OC (1.13%), bacterial count (131.65 × 107 cfu g-1 soil), actinomycetes count (60.89 × 102 cfu g-1 soil), fungal count (31.11 × 102 cfu g-1 soil), microbial biomass (51.27 µg g-1 soil), dehydrogenase enzyme (3.77 mg TPF h-1 g-1 soil) and phosphatase enzyme (21.72 mol PNP h-1 g-1 soil) were observed with the application of Jeevamrit @ 30 ml plant-1. CONCLUSION: Early planting (P1) and inorganic fertilization (NPK @ 30 g m-2) resulted in improved yield and soil macronutrient content. The soil microbial population and enzymatic activity were improved with the jeevamrit application. This approach highlights the potential for improved yield and soil health in chrysanthemum cultivation, promoting a more eco-friendly and economically viable agricultural model.


Assuntos
Chrysanthemum , Fertilizantes , Microbiologia do Solo , Solo , Chrysanthemum/crescimento & desenvolvimento , Fertilizantes/análise , Solo/química , Estações do Ano , Biomassa
2.
BMC Plant Biol ; 24(1): 564, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879470

RESUMO

BACKGROUND: Three Amino acid Loop Extension (TALE) belongs to the homeobox group of genes that are important constituents of plant systems. The TALE gene family is instrumental not only in growth and development but also plays an essential role in regulating plant response to environmental adversaries. RESULTS: In the present study, we isolated 21 CsTALE genes from the cucumber (Cucumis sativus L.) genome database. Bioinformatics tools were put in place to understand the structural and functional components of the CsTALE gene family. The evolutionary analysis dissected them into seven subclades (KNOX-I, KNOX-II, and BELL-I to BELL-V). The cis-acting elements in the promoter region of CsTALE genes disclosed that they are key regulators of hormonal and stress-related processes. Additionally, the STRING database advocated the concerting role of CsTALE proteins with other key transcription factors potent in plant developmental biology. The CsmiR319 and CsmiR167a-3p targeting the CsTALE15 and CsTALE16, respectively, further assert the importance of the CsTALE gene family posttranscriptional-related processes. Tissue-specific gene expression unfolded the fundamental involvement of CsTALE genes as they were expressed throughout the developmental stages. Under waterlogging stress, the CsTALE17 expressed significantly higher values in WL, WL-NAA, and WL-ETH but not in WL-MeJA-treated samples. CONCLUSIONS: The present study reveals the evolution and functions of the CsTALE gene family in cucumber. Our work will provide a platform that will help future researchers address the issue of waterlogging stress in the Yangtze River Delta.


Assuntos
Cucumis sativus , Regulação da Expressão Gênica de Plantas , Família Multigênica , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Estresse Fisiológico , Cucumis sativus/genética , Cucumis sativus/fisiologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Evolução Molecular , Filogenia , Genes de Plantas
3.
Plant Physiol Biochem ; 213: 108865, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936071

RESUMO

The emergence of microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant threats to soil ecosystems. Given the widespread contamination of ecosystems by various types of MPs, including polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE), it is crucial to understand their effects on agricultural productivity. The present study was conducted to investigate the effects of different types of MPs (PS, PVC, and PE) on various aspects of sunflower (Helianthus annuus L.) growth with the addition of rice straw biochar (RSB). This study aimed to examine plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, and the response of various antioxidants (enzymatic and non-enzymatic) and their specific gene expression, proline metabolism, the AsA-GSH cycle, cellular fractionation in the plants and post-harvest soil properties. The research outcomes indicated that elevated levels of different types of MPs in the soil notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. Different types of MPs also induced oxidative stress, which caused an increase in various enzymatic and non-enzymatic antioxidant compounds, gene expression and sugar content; notably, a significant increase in proline metabolism, AsA-GSH cycle, and pigmentation of cellular components was also observed. Favorably, the addition of RSB significantly increased plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and relevant gene expression while decreasing oxidative stress. In addition, RSB amendment decreased proline metabolism and AsA-GSH cycle in H. annuus plants, thereby enhancing cellular fractionation and improving post-harvest soil properties. These results open new avenues for sustainable agriculture practices and show great potential for resolving the urgent issues caused by microplastic contamination in agricultural soils.


Assuntos
Antioxidantes , Carvão Vegetal , Helianthus , Microplásticos , Oryza , Solo , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Antioxidantes/metabolismo , Carvão Vegetal/farmacologia , Helianthus/metabolismo , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Solo/química , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Biomassa , Metabolismo Secundário , Prolina/metabolismo
4.
Microsc Res Tech ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884334

RESUMO

This study presents a comprehensive investigation into the evolutionary trajectories of Rhipicephalus ticks (Ixodidae) through the interpretation of molecular phylogenetics, elucidating their chromatographic spectrum. The use of advanced chromatographic tools in this study explored the dynamics chemical profiling, providing valuable insights into the evolutionary history and ecological adaptations. Prevalence of Rhipicephalus ticks was 4.5% in sheep and 3.9% in goats. The ITS2 sequence of the Rhipicephalus sanguineus (OK642408) and Rhipicephalus microplus (OK642409) form a distinct clade with sequences from other countries. The 16S rRNA sequences of R. sanguineus (OK560870) clustered with sequences form three lineages, tropical, temperate, and south-eastern. The Cox I gene-identified Rhipicephalus turanicus (OK623472) and R. microplus (OK623463) form separate clades with sequences. The HPLC chromatogram of tick samples reveals a diverse array of identified hydrocarbons, explained the complex chemical composition of their exoskeletons. This analytical approach provides valuable insights into the specific hydrocarbon profiles, allowing for potential applications in species differentiation, ecological studies, and a deeper understanding of the functional roles played by hydrocarbon compounds in tick physiology. The findings revealed the potential of applying molecular phylogenetics tools with chromatography not only to enhance our understanding of tick evolution but also to inform strategies for disease control and management in regions where Rhipicephalus ticks (Ixodidae) are endemic. RESEARCH HIGHLIGHTS: Chemical mapping utilizing advanced chromatographic techniques. Scanning microscopic insights high-resolution scanning tool to observe structural and morphological features of ticks at a molecular level. Molecular phylogeny data elucidate the evolutionary relationships among tick species.

5.
Am J Transl Res ; 16(3): 940-954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586090

RESUMO

OBJECTIVES: To elucidate the expression levels and prognostic value of the Lipoyltransferase 2 (LIPT2) gene in a pan-cancer view. METHODOLOGY: Our study comprehensively investigated the role of LIPT2 in pan-cancer, combining bioinformatics analyses with experimental validations. RESULTS: Analysis of LIPT2 mRNA expression across various cancers revealed a significant up-regulation in 18 tumor types and down-regulation in 8 types, indicating its diverse involvement. Prognostic assessment demonstrated a correlation between elevated LIPT2 expression and poorer outcomes in Overall Survival (OS) and Disease-Free Survival (DFS), particularly in Glioblastoma Multiforme (GBM), Liver Hepatocellular Carcinoma (LIHC), and Pheochromocytoma and Paraganglioma (PCPG). Protein expression analysis in GBM, LIHC, and PCPG affirmed a consistent increase in LIPT2 levels compared to normal tissues. Examining the methylation status in GBM, LIHC, and PCPG, we found reduced promoter methylation levels in tumor samples, suggesting a potential influence on LIPT2 function. Genetic mutation analysis using cBioPortal indicated a low mutation frequency (< 2%) in LIPT2 across GBM, LIHC, and PCPG. Immune correlation analysis unveiled a positive association between LIPT2 expression and infiltration levels of immune cells in GBM, LIHC, and PCPG. Single-cell analysis illustrated LIPT2's positive correlation with functional states, including angiogenesis and inflammation. Enrichment analysis identified LIPT2-associated processes and pathways, providing insights into its potential molecular mechanisms. Drug sensitivity analysis demonstrated that elevated LIPT2 expression conferred resistance to multiple compounds, while lower expression increased sensitivity. Finally, RT-qPCR validation in HCC cell lines confirmed the heightened expression of LIPT2 compared to a control cell line, reinforcing the bioinformatics findings. CONCLUSION: Overall, our study highlights LIPT2 as a versatile player in cancer, influencing diverse aspects from molecular processes to clinical outcomes across different cancer types.

6.
Am J Transl Res ; 16(3): 738-754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586115

RESUMO

OBJECTIVES: While dysregulation of DSCC1 (DNA Replication And Sister Chromatid Cohesion 1) has been established in breast cancer and colorectal cancer, its associations with other tumors remain unclear. Therefore, this study was launched to explore the role of DSCC1 in pan-cancer. METHODOLOGY: In this study, we investigate the biological functions of DSCC1 across 33 solid tumors, elucidating its role in promoting oncogenesis and progression in various cancers through comprehensive analysis of multi-omics data. RESULTS: We conducted a comprehensive analysis of DSCC1 expression using RNA-seq data from TCGA and GTEx databases across 30 cancer types. Striking variations were observed, with significant overexpression of DSCC1 identified in numerous cancers. Elevated DSCC1 level was strongly associated with poorer prognosis, shorter survival, and advanced tumor stages in kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), as indicated by Kaplan-Meier curves and GEPIA2 analysis. Further investigation into the molecular mechanisms revealed reduced DNA methylation in the DSCC1 promoter region in KIRP, LIHC, and LUAD, supporting enhanced RNA transcription. Protein expression analysis via the Human Protein Atlas (HPA) corroborated mRNA expression findings, showcasing elevated DSCC1 protein in KIRP, LIHC, and LUAD tissues. Mutational analysis using cBioPortal revealed alterations in 0.4% of KIRP, 17% of LIHC, and 5% of LUAD samples, predominantly characterized by amplification. Immune cell infiltration analysis demonstrated robust positive correlations between DSCC1 expression and CD8+ T cells, CD4+ T cells, and B cells, influencing the tumor microenvironment. STRING and gene enrichment analyses unveiled DSCC1's involvement in critical pathways, emphasizing its multifaceted impact. Notably, drug sensitivity analysis highlighted a significant correlation between DSCC1 mRNA expression and responses to 78 anticancer treatments, suggesting its potential as a predictive biomarker and therapeutic target for KIRP, LIHC, and LUAD. Finally, immunohistochemistry staining of clinical samples validated computational results, confirming elevated DSCC1 protein expression. CONCLUSION: Overall, this study provides comprehensive insights into the pivotal role of DSCC1 in KIRP, LIHC, and LUAD initiation, progression, and therapeutic responsiveness, laying the foundation for further investigations and personalized treatment strategies.

7.
Int J Biol Macromol ; 266(Pt 1): 131155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547944

RESUMO

Here, we reported the process for the production of Pd/CuO/ZnO nanocomposite utilizing alkaline protease from Phalaris minor seed extract, which is a unique, effective biogenic approach. Alkaline protease performed a crucial part in the reduction, capping and stabilization of Pd/CuO/ZnO nanocomposites. A series of physicochemical techniques were used to inquire the formation, size, shape and crystalline nature of Pd/CuO/ZnO nanocomposites. The notable performance of the synthesized nanocomposite as a photocatalyst and an antibacterial disinfectant was astonishing. The Pd/CuO/ZnO nanocrystals showed considerable photocatalytic activity by eliminating 99 % of the methylene blue (MB) in <30 min of exposure. After three test cycles, the nanocatalyst demonstrated exceptional reliability as a photocatalyst. The nanocomposite was also discovered to be an effective antibacterial agent, with zones of inhibitory activity for Staphylococcus aureus and Escherichia coli bacteria of 30(±0.2), 27(±0.3), 22(±0.2), and 21(±0.3) mm, respectively, in both light and dark conditions. Moreover, the Pd/CuO/ZnO nanocomposites showed strong antioxidant activity by efficiently scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The photocatalytic, antibacterial and antioxidative performance of Pd, CuO, ZnO, and CuO/ZnO were also assessed for the sake of comparison. This work shows that biogenic nanocomposites may be employed as a feasible alternative photocatalyst for the decomposition of dyes in waste water as well as a sustainable antibacterial agent.


Assuntos
Antibacterianos , Cobre , Endopeptidases , Nanocompostos , Paládio , Staphylococcus aureus , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Nanocompostos/química , Cobre/química , Catálise , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Paládio/química , Staphylococcus aureus/efeitos dos fármacos , Endopeptidases/química , Escherichia coli/efeitos dos fármacos , Proteínas de Bactérias/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Processos Fotoquímicos
9.
Heliyon ; 10(6): e27811, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524627

RESUMO

Plant functional traits are consistently linked with certain ecological factors (i.e., abiotic and biotic), determining which components of a plant species pool are assembled into local communities. In this sense, non-native naturalized plants show more plasticity of morphological traits by adopting new habitat (an ecological niche) of the invaded habitats. This study focuses on the biomass allocation pattern and consistent traits-environment linkages of a naturalized Datura innoxia plant population along the elevation gradient in NW, Pakistan. We sampled 120 plots of the downy thorn apple distributed in 12 vegetation stands with 18 morphological and functional biomass traits during the flowering season and were analyzed along the three elevation zones having altitude ranges from 634.85 m to 1405.3 m from sear level designated as Group I to III identified by Ward's agglomerative clustering strategy (WACS). Our results show that many morphological traits and biomass allocation in different parts varied significantly (p < 0.05) in the pair-wise comparisons along the elevation. Likewise, all plant traits decreased from lower (drought stress) to high elevation zones (moist zones), suggesting progressive adaptation of Datura innoxia with the natural vegetation in NW Pakistan. Similarly, the soil variable also corresponds with the trait's variation e.g., significant variations (P < 0.05) of soil organic matter, organic carbon, Nitrogen and Phosphorus was recorded. The trait-environment linkages were exposed by redundancy analysis (RDA) that was co-drive by topographic (elevation, r = -0.4897), edaphic (sand, r = -0.4565 and silt, r = 0.5855) and climatic factors. Nevertheless, the influences of climatic factors were stronger than soil variables that were strongly linked with elevation gradient. The study concludes that D. innoxia has adopted the prevailing environmental and climatic conditions, and further investigation is required to evaluate the effects of these factors on their phytochemical and medicinal value.

10.
Am J Transl Res ; 16(2): 432-445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463578

RESUMO

BACKGROUND: Human cell division cycle-associated protein 8 (CDCA8), a critical regulator of mitosis, has been identified as a prospective prognostic biomarker in several cancer types, including breast, colon, and lung cancers. This study analyzed the diagnostic/prognostic potential and clinical implications of CDCA8 across diverse cancers. METHODS: Bioinformatics and molecular experiments. RESULTS: Analyzing TCGA data via TIMER2 and GEPIA2 databases revealed significant up-regulation of CDCA8 in 23 cancer types compared to normal tissues. Prognostically, elevated CDCA8 expression correlated with poorer overall survival in KIRC, LUAD, and SKCM, emphasizing its potential as a prognostic marker. UALCAN analysis demonstrated CDCA8 up-regulation based on clinical variables, such as cancer stage, race, and gender, in these cancers. Epigenetic exploration indicated reduced CDCA8 promoter methylation levels in Kidney Renal Clear Cell Carcinoma (KIRC), Lung Adenocarcinoma (LUAD), and Skin Cutaneous Melanoma (SKCM) tissues compared to normal controls. Promoter methylation and mutational analyses showcased a hypomethylation and low mutation rate for CDCA8 in these cancers. Correlation analysis revealed positive associations between CDCA8 expression and infiltrating immune cells, particularly CD8+ and CD4+ T cells. Protein-protein interaction (PPI) network analysis unveiled key interacting proteins, while gene enrichment analysis highlighted their involvement in crucial cellular processes and pathways. Additionally, exploration of CDCA8-associated drugs through DrugBank presented potential therapeutic options for KIRC, LUAD, and SKCM. In vitro validation using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) confirmed elevated CDCA8 expression in LUAD cell lines (A549 and H1299) compared to control cell lines (Beas-2B and NL-20). CONCLUSION: This study provides concise insights into CDCA8's multifaceted role in KIRC, LUAD, and SKCM, covering expression patterns, diagnostic and prognostic relevance, epigenetic regulation, mutational landscape, immune infiltration, and therapeutic implications.

11.
Food Funct ; 15(8): 4354-4364, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38533683

RESUMO

Alzheimer's Disease (AD) is a fatal age-related neurodegenerative condition with a multifactorial etiology contributing to 70% of dementia globally. The search for a multi-target agent to hit different targets involved in the pathogenesis of AD is crucial. In the present study, the neuroprotective effects of four Morus extracts were assessed in LPS-induced AD in mice. Among the studied species, M. macroura exhibited a profound effect on alleviating the loss of cognitive function, improved the learning ability, restored the acetylcholine esterase (AChE) levels to normal, and significantly reduced the tumor necrosis factor alpha (TNF-α) brain content in LPS-treated mice. To investigate the secondary metabolome of the studied Morus species, ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-HRMS/MS), aided with feature-based molecular networking, was employed. Among the annotated features, aryl benzofurans and prenylated flavonoids were suggested as being responsible for the observed neuroprotective effect. Furthermore, some of the detected metabolites were proposed as new natural products such as moranoline di-O-hexoside (1), isomers of trimethoxy-dihydrochalcone-O-dihexoside (59 & 76), (hydroxy-dimethoxyphenyl)butenone-O-hexoside (82), and O-methylpreglabridin-O-sulphate (105). In conclusion, our findings advocate the potential usage of M. macroura leaves for the management of AD, yet after considering further clinical trials.


Assuntos
Doença de Alzheimer , Metaboloma , Morus , Fármacos Neuroprotetores , Extratos Vegetais , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/farmacologia , Camundongos , Extratos Vegetais/farmacologia , Masculino , Morus/química , Metaboloma/efeitos dos fármacos , Espectrometria de Massas em Tandem , Modelos Animais de Doenças , Cromatografia Líquida de Alta Pressão , Humanos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
12.
Front Nutr ; 11: 1276307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450233

RESUMO

Dryopteris filix-mas (hereafter D. filix-mas), a wild leafy vegetable, has gained popularity among high mountain residents in the Hindukush-Himalaya region due to its exceptional nutritional profile, and their commercial cultivation also offers viable income alternatives. Nevertheless, besides phytochemicals with medicinal applications, ecological factors strongly affect their mineral contents and nutritional composition. Despite this, little has been known about how this wild fern, growing in heterogeneous ecological habitats with varying soil physiochemical properties and coexisting species, produces fronds with optimal mineral and nutritional properties. Given its nutritional and commercial significance, we investigated how geospatial, topographic, soil physiochemical characteristics and coexisting plants influence this widely consumed fern's mineral and nutrient content. We collected soil, unripe fern fronds, and associated vegetation from 27 D. filix-mas populations in Swat, NW Pakistan, and were analyzed conjointly with cluster analysis and ordination. We found that the fronds from sandy-loam soils at middle elevation zones exhibited higher nitrogen contents (9.17%), followed by crude fibers (8.62%) and fats (8.09%). In contrast, juvenile fronds from the lower and high elevation zones had lower moisture (1.26%) and ash (1.59%) contents, along with fewer micronutrients such as calcium (0.14-0.16%), magnesium (0.18-0.21%), potassium (0.72-0.81%), and zinc (12% mg/kg). Our findings indicated the fern preference for middle elevation zones with high organic matter and acidic to neutral soil (pH ≥ 6.99) for retaining higher nutritional contents. Key environmental factors emerged from RDA analysis, including elevation (r = -0.42), aspect (r = 0.52), P-3 (r = 0.38), K+ (r = 0.41), EC (r = 0.42), available water (r = -0.42), and field capacity (r = -0.36), significantly impacting fern frond's mineral accumulation and nutrient quality enhancement. Furthermore, coexisting plant species (r = 0.36) alongside D. filix-mas played a pivotal role in improving its mineral and nutritional quality. These findings shed light on the nutritional potential of D. filix-mas, which could help address malnutrition amidst future scarcity induced by changing climates. However, the prevalent environmental factors highlighted must be considered if the goal is to cultivate this fern on marginal lands for commercial exploitation with high mineral and nutrient yields in Hindukush-Himalaya.

13.
RSC Adv ; 14(9): 5754-5763, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362085

RESUMO

In the current research, we produced green, cost-effective, eco-friendly silver nanoparticles using a single-step approach. Plants are considered highly desirable systems for nanoparticle synthesis because they possess a variety of secondary metabolites with significant reduction potential. In the current research, the dried leaf extract of Rubus fruticosus was utilized as a capping and reducing agent for the fabrication of silver nanoparticles, to prepare reliable biogenic silver nanoparticles and subsequently to investigate their potential against some common phytopathogens. The prepared silver nanoparticles were exploited to quantify the total flavonoid content (TFC), total phenolic content (TPC) and DPPH-based antioxidant activity. Different concentrations of aqueous extracts of plant leaves and silver nitrate (AgNO3) were reacted, and the color change of the reactant mixture confirmed the formation of Rubus fruticosus leaf-mediated silver nanoparticles (RFL-AgNPs). A series of characterization techniques such as UV-vis spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffraction revealed the successful synthesis of silver nanoparticles. The surface plasmon resonance peak appeared at 449 nm. XRD analysis demonstrated the crystalline nature, EDX confirmed the purity, and TEM demonstrated that the nanoparticles are mostly spherical in form. Furthermore, the biosynthesized nanoparticles were screened for in vitro antibacterial activity, antioxidant activity, and total phenolic and flavonoid content. The nanoparticles were used in different concentrations alone and in combination with plant extracts to inhibit Erwinia caratovora and Ralstonia solanacearum. In high-throughput assays used to inhibit these plant pathogens, the nanoparticles were highly toxic against bacterial pathogens. This study can be exploited for planta assays against phytopathogens utilizing the same formulations for nanoparticle synthesis and to develop potent antibacterial agents to combat plant diseases.

14.
Biomed Pharmacother ; 172: 116274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364738

RESUMO

PURPOSE: Oral diethylnitrosamine (DEN) is a known hepatocarcinogen that damages the liver and causes cancer. DEN damages the liver through reactive oxygen species-mediated inflammation and biological process regulation. MATERIALS AND METHODS: Gallic acid-coated zinc oxide nanoparticles (Zn-GANPs) were made from zinc oxide (ZnO) synthesized by irradiation dose of 50 kGy utilizing a Co-60 γ-ray source chamber with a dose rate of 0.83 kGy/h and gallic acid from pomegranate peel. UV-visible (UV) spectrophotometry verified Zn-GANP synthesis. TEM, DLS, and FTIR were utilized to investigate ZnO-NPs' characteristics. Rats were orally exposed to DEN for 8 weeks at 20 mg/kg five times per week, followed by intraperitoneal injection of Zn-GANPs at 20 mg/kg for 5 weeks. Using oxidative stress, anti-inflammatory, liver function, histologic, apoptotic, and cell cycle parameters for evaluating Zn-GANPs treatment. RESULTS: DEN exposure elevated inflammatory markers (AFP and NF-κB p65), transaminases (AST, ALT), γ-GT, globulin, and total bilirubin, with reduced protein and albumin levels. It also increased MDA levels, oxidative liver cell damage, and Bcl-2, while decreasing caspase-3 and antioxidants like GSH, and CAT. Zn-GANPs significantly mitigated these effects and lowered lipid peroxidation, AST, ALT, and γ-GT levels, significantly increased CAT and GSH levels (p<0.05). Zn-GANPs caused S and G2/M cell cycle arrest and G0/G1 apoptosis. These results were associated with higher caspase-3 levels and lower Bcl-2 and TGF-ß1 levels. Zn-GANPs enhance and restore the histology and ultrastructure of the liver in DEN-induced rats. CONCLUSION: The data imply that Zn-GANPs may prevent and treat DEN-induced liver damage and carcinogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas Metálicas , Óxido de Zinco , Animais , Ratos , Zinco , Óxido de Zinco/farmacologia , Caspase 3 , NF-kappa B , Ácido Gálico/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Transdução de Sinais , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico
16.
Sci Rep ; 14(1): 2868, 2024 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311636

RESUMO

The escalating presence of heavy metals (HMs) in the Panjkora River water and their impact on fish pose a significant challenge to both the ecological community and human health. Consequently, a study was conducted with the primary aim of elucidating their influence on human health-related issues. To address this, the concentrations of heavy metals, including arsenic (As), cadmium (Cd), iron (Fe), manganese (Mn), lead (Pb), and zinc (Zn), in both water and the fish species Crossocheilus diplocheilus were investigated across various locations within the study area. The quantification of HMs concentration was carried out utilizing an atomic absorption spectrophotometer. The highest concentration in water was found as 0.060 mg/L for Pb and lowest for Fe, whereas the highest concentration in fish was 2.028 mg/kg for Pb and lowest for As. Human health risk associated with fish eating was evaluated by using health risk indices (HRI) for non-carcinogenic health risks and targeted cancer risk (TR) for carcinogenic health risks. The values of the health risk index (HRI) were found greater than 1 except Fe (0.0792), Zn (0.782), and Mn (0.541). The highest mean HRI > 1 was recorded for As (62.99), Cd (26.85), and Pb (10.56). This implies that fish consumption from river Panjkora is not safe up to some extent. Similarly, the TR value for As, Cd, and Pb was found 2.8 [Formula: see text], 1.6 [Formula: see text], 2.8 ×[Formula: see text] which showed cancer risk. There is a detected risk to human health associated with the consumption of fish from the Panjkora River. The government must implement adaptive measures to address this significant issue of water pollution in the study area. Additionally, there is a need for further extensive and prolonged research studies in this context.


Assuntos
Arsênio , Metais Pesados , Neoplasias , Poluentes Químicos da Água , Animais , Humanos , Qualidade da Água , Cádmio , Chumbo , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Arsênio/toxicidade , Arsênio/análise , Manganês , Rios , Peixes , Medição de Risco
17.
Environ Sci Pollut Res Int ; 31(7): 10594-10608, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198090

RESUMO

Cadmium significantly impacts plant growth and productivity by disrupting physiological, biochemical, and oxidative defenses, leading to severe damage. The application of Zn-Lys improves plant growth while reducing the stress caused by heavy metals on plants. By focusing on cadmium stress and potential of Zn-Lys on pea, we conducted a pot-based study, organized under completely randomized block design CRD-factorial at the Botanical Garden of Government College University, Faisalabad. Both pea cultivars were grown in several concentrations of cadmium @ 0, 50 and 100 µM, and Zn-Lys were exogenously applied @ 0 mg/L and 10 mg/L with three replicates for each treatment. Cd-toxicity potentially reduces plant growth, chlorophyll contents, osmoprotectants, and anthocyanin content; however, an increase in MDA, H2O2 initiation, enzymatic antioxidant activities as well as phenolic, flavonoid, proline was observed. Remarkably, exogenously applied Zn-Lys significantly enhanced the plant growth, biomass, photosynthetic attributes, osmoprotectants, and anthocyanin contents, while further increase in enzymatic antioxidant activities, total phenolic, flavonoid, and proline contents were noticed. However, application of Zn-Lys instigated a remarkable decrease in levels of MDA and H2O2. It can be suggested with recommendation to check the potential of Zn-Lys on plants under cadmium-based toxic soil.


Assuntos
Antioxidantes , Poluentes do Solo , Humanos , Cádmio , Pisum sativum , Peróxido de Hidrogênio , Antocianinas , Zinco , Prolina , Suplementos Nutricionais , Poluentes do Solo/análise
18.
Regul Toxicol Pharmacol ; 146: 105536, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056705

RESUMO

This study aimed to isolate and characterize moringa leaf protein (MLP) via HPLC and evaluate its consumption's effects through rat model. Four groups of Albino Wistar rats (n = 25 each) along with a control group (n = 25) were acclimatized. The isolated MLP was added to the basal diet (casein; control) in various percentages (25, 50, 75, 100%) for a 21-day experimental period. On three intervals (1st, 11th, 21st days), blood samples were collected and subjected for hematological and biochemical examination (Renal Function Test (RFT), Liver Function Test (LFT)). MLP contained a variety of essential and non-essential amino acids in substantial amounts. The Protein Efficiency Ratio (PER) of 50% MLP-treated group was the highest (1.72) among MLP treatments. Increases in feed intake and weight were observed in treated rats compared to the control. The hematological profile of the rats revealed increases in Hemoglobin (Hb) (7.9-14.0%), White Blood Cell (WBC) (35.9-51.5%), Red Blood Cell (RBC) (17.1-22.2%), Hematocrit (HCT) (13.1-22.9%), and platelets levels (36.5-40.6%) from day 1. Protein isolates decreased liver parameters but resulted in non-significant changes in liver and kidney functions in rats. Further investigation is needed to determine the safe daily intake of MLP.


Assuntos
Moringa oleifera , Proteínas de Plantas , Ratos , Animais , Moringa oleifera/química , Proteínas de Carne/análise , Extratos Vegetais/farmacologia , Ratos Wistar , Carne , Folhas de Planta/química
19.
PeerJ ; 11: e16369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047032

RESUMO

The tolerance of Chenopodium ambrosioides to some heavy metals under in vitro environment was thoroughly investigated. A micropropagation protocol was developed to facilitate the mass production of plants and to identify metals-tolerant species for potential use in the restoration of polluted areas. Nodal explants exhibited callus formation when treated with N6-benzyladenin (BA) (1.5 mg/l) and a combination of BA/α-naphthalene acetic acid (NAA) at concentrations of 1.5/1.0 mg/l on the Murashige and Skoog (MS) medium. The optimal shoot formation was achieved with the callus grown on a medium enriched with 1.5/1.0 mg/l BA/NAA, resulting in an impressive number (21.89) and length (11.79 cm) of shoots. The in vitro shoots were rooted using NAA (1.0 and 1.5 mg/l) and were acclimatized in pots with 71% survival rate. After standardizing micropropagation protocol, the in vitro shoots were subjected to various doses of lead nitrate (Pb(NO3)2 and cadmium chloride (CdCl2). Pb(NO3)2 and CdCl2 in the media let to a reduction in shoot multiplication, decreasing from 18.73 in the control group to 11.31 for Pb(NO3)2 and 13.89 for CdCl2 containing medium. However, Pb(NO3)2 and CdCl2 promoted shoot length from 5.61 in the control to 9.86 on Pb(NO3)2 and 12.51 on CdCl2 containing medium. In the case of Pb(NO3)2 treated shoots, the growth tolerance index (GTI) ranged from117.64% to 194.11%, whereas for CdCl2 treated shoots, the GTI ranged from 188.23% to 264.70%. Shoots treated with high level of Pb(NO3)2induced reddish-purple shoots, while a low level of Pb(NO3)2 induced shoots displayed both green and reddish-purple colors in the same explants. In CdCl2 treated culture, the toxic effects were narrow leaf lamina, elongated petiole and a dark reddish purple coloration. These findings highlight the remarkable potential of C. ambrosioides to maintain growth and organogenesis even in the presence Pb(NO3)2 and CdCl2 on the MS medium, indicating a high degree of metal tolerance.


Assuntos
Cádmio , Chenopodium ambrosioides , Cádmio/toxicidade , Chumbo/toxicidade
20.
BMC Plant Biol ; 23(1): 648, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102555

RESUMO

In the current industrial scenario, cadmium (Cd) as a metal is of great importance but poses a major threat to the ecosystem. However, the role of micronutrient - amino chelates such as iron - lysine (Fe - lys) in reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous applications of Fe - lys i.e., 0 and10 mg L - 1, were examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments, oxidative stress indicators and antioxidant response, sugar and osmolytes under the soil contaminated with varying levels of Cd i.e., 0, 50 and 100 µM using two different varieties of canola i.e., Sarbaz and Pea - 09. Results revealed that the increasing levels of Cd in the soil decreased plant growth and growth-related attributes and photosynthetic apparatus and also the soluble protein and soluble sugar. In contrast, the addition of different levels of Cd in the soil significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), which induced oxidative damage in both varieties of canola i.e., Sarbaz and Pea - 09. However, canola plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and non-enzymatic compounds such as phenolic, flavonoid, proline, and anthocyanin, which scavenge the over-production of reactive oxygen species (ROS). Cd toxicity can be overcome by the supplementation of Fe - lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and sugar contents, and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of Cd in the soil. Research findings, therefore, suggested that the Fe - lys application can ameliorate Cd toxicity in canola and result in improved plant growth and composition under metal stress.


Assuntos
Brassica napus , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Brassica napus/metabolismo , Lisina/metabolismo , Ferro/metabolismo , Peróxido de Hidrogênio/metabolismo , Ecossistema , Antioxidantes/metabolismo , Estresse Oxidativo , Solo/química , Açúcares/metabolismo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA