Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(13): 3233-3242, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38835278

RESUMO

The impact of fluid flow shear stresses, generated by the movement of blood through vasculature, on the organization and maturation of vessels is widely recognized. Nevertheless, it remains uncertain whether external fluid flows outside of the vasculature in the surrounding tissue can similarly play a role in governing these processes. In this research, we introduce an innovative technique called superfusion-induced vascular steering (SIVS). SIVS involves the controlled imposition of external fluid flow patterns onto the vascularized chick chorioallantoic membrane (CAM), allowing us to observe how this impacts the organization of vascular networks. To investigate the concept of SIVS, we conducted superfusion experiments on the intact chick CAM cultured within an engineered eggshell system, using phosphate buffered saline (PBS). To capture and analyze the effects of superfusion, we employed a custom-built microscopy setup, enabling us to image both superfused and non-superfused regions within the developing CAM. This study provides valuable insights into the practical application of fluid superfusion within an in vivo context, shedding light on its significance for understanding tissue development and manipulation in an engineering setting.


Assuntos
Galinhas , Membrana Corioalantoide , Animais , Membrana Corioalantoide/metabolismo , Membrana Corioalantoide/irrigação sanguínea , Embrião de Galinha
2.
Adv Pharm Bull ; 13(1): 123-133, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36721809

RESUMO

Purpose: A hemocompatible substrate can offer a wonderful facility for nitric oxide (NO) production by vascular endothelial cells in reaction to the inflammation following injuries. NO inhibits platelet aggregation this is especially critical in small-diameter vessels. Methods: The substrate films were made of polyurethane (PU) in a casting process and after plasma treatments, their surface was chemically decorated with polyethylene glycol (PEG) 2000, gelatin, gelatin-aspirin, gelatin-heparin and gelatin-aspirin-heparin. The concentrations of these ingredients were optimized in order to achieve the biocompatible values and the resulting modifications were characterized by water contact angle and Fourier transform infra-red (FTIR) assays. The values of NO production and platelet adhesion were then examined. Results: The water contact angle of the modified surface was reduced to 26±4∘ and the newly developed hydrophilic chemical groups were confirmed by FTIR. The respective concentrations of 0.05 mg/ml and 100 mg/mL were found to be the IC50 values for aspirin and heparin. However, after the surface modification with aspirin, the bioactivity of the substrate increased in compared to the other experimental groups. In addition, there was a synergistic effect between these reagents for NO synthesis. While, heparin inhibited platelet adhesion more than aspirin. Conclusion: Because of the highly hydrophilic nature of heparin, this reagent was hydrolyzed faster than aspirin and therefore its influence on platelet aggregation and cell growth was greater. Taken together, the results give the biocompatible concentrations of both biomolecules that are required for endothelial cell proliferation, NO synthesis and platelet adhesion.

3.
Bioact Mater ; 12: 71-84, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35087964

RESUMO

Spatiotemporally controlled growth factor (GF) delivery is crucial for achieving functional vasculature within engineered tissues. However, conventional GF delivery systems show inability to recapitulate the dynamic and heterogeneous nature of developing tissue's biochemical microenvironment. Herein, an aptamer-based programmable GF delivery platform is described that harnesses dynamic affinity interactions for facilitating spatiotemporal control over vascular endothelial GF (VEGF165) bioavailability within gelatin methacryloyl matrices. The platform showcases localized VEGF165 sequestration from the culture medium (offering spatial-control) and leverages aptamer-complementary sequence (CS) hybridization for triggering VEGF165 release (offering temporal-control), without non-specific leakage. Furthermore, extensive 3D co-culture studies (human umbilical vein-derived endothelial cells & mesenchymal stromal cells), in bi-phasic hydrogel systems revealed its fundamentally novel capability to selectively guide cell responses and manipulate lumen-like microvascular networks via spatiotemporally controlling VEGF165 bioavailability within 3D microenvironment. This platform utilizes CS as an external biochemical trigger for guiding vascular morphogenesis which is suitable for creating dynamically controlled engineered tissues.

4.
Curr Stem Cell Res Ther ; 16(2): 209-229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32691716

RESUMO

Currently, combining stem cells (SCs) with biomaterial scaffolds provides a promising strategy for the future of biomedicine and regenerative medicine (RG). The cells need similar substrates of the extracellular matrix (ECM) for normal tissue development, which signifies the importance of three dimensional (3D) scaffolds to determine cell fate. Herein, the importance and positive contributions of corresponding 3D scaffolds on cell functions, including cell interactions, cell migrations, and nutrient delivery, are presented. Furthermore, the synthesis techniques which are recruited to fabricate the 3D scaffolds are discussed, and the related studies of 3D scaffold for different tissues are also reported in this paper. This review focuses on 3D scaffolds that have been used for tissue engineering purposes and directing stem cell fate as a means of producing replacements for biomedical applications.


Assuntos
Medicina Regenerativa , Engenharia Tecidual/tendências , Alicerces Teciduais , Materiais Biocompatíveis , Matriz Extracelular , Humanos , Medicina Regenerativa/tendências
5.
Proc Inst Mech Eng H ; 234(12): 1397-1408, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32692276

RESUMO

Bioreactor system has been used in bone tissue engineering in order to simulate dynamic nature of bone tissue environments. Perfusion bioreactors have been reported as the most efficient types of shear-loading bioreactor. Also, combination of forces, such as rotation plus perfusion, has been reported to enhance cell growth and osteogenic differentiation. Mathematical modeling using sophisticated infrastructure processes could be helpful and streamline the development of functional grafts by estimating and defining an effective range of bioreactor settings for better augmentation of tissue engineering. This study is aimed to conduct computational modeling for newly designed bioreactors in order to alleviate the time and material consuming for evaluating bioreactor parameters and effect of fluid flow hydrodynamics (various amounts of shear stress) on osteogenesis. Also, biological assessments were performed in order to validate similar parameters under implementing the perfusion or rotating and perfusion fluid motions in bioreactors' prototype. Finite element method was used to investigate the effect of hydrodynamic of fluid flow inside the bioreactors. The equations used in the simulation to calculate the velocity values and consequently the shear stress values include Navier-Stokes and Brinkman equations. It has been shown that rotational fluid motion in rotating and perfusion bioreactor produces more velocity and shear stress compared with perfusion bioreactor. Moreover, implementing the perfusion together with rotational force in rotating and perfusion bioreactors has been shown to have more cell proliferation and higher activity of alkaline phosphatase enzyme as well as formation of extra cellular matrix sheet, as an indicator of bone-like tissue formation.


Assuntos
Osteogênese , Engenharia Tecidual , Reatores Biológicos , Osso e Ossos , Perfusão , Alicerces Teciduais
6.
J Biomed Mater Res A ; 108(8): 1662-1672, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191385

RESUMO

Dynamic-based systems are bio-designed in order to mimic the micro-environments of the bone tissue. There is limited direct comparison between perfusion and perfusion-rotation forces in designing a bioreactor. Hence, in current study, we aimed to compare given bioreactors for bone regeneration. Two types of bioreactors including rotating & perfusion and perfusion bioreactors were designed. Mesenchymal stem cells derived from buccal fat pad were loaded on a gelatin/ß-Tricalcium phosphate scaffold. Cell-scaffold constructs were subjected to different treatment condition and place in either of the bioreactors. Effect of different dynamic conditions on cellular behavior including cell proliferation, cell adhesion, and osteogenic differentiation were assessed. Osteogenic assessment of scaffolds after 24 days revealed that rotating & perfusion bioreactor led to significantly higher expression of OCN and RUNX2 genes and also greater amount of ALP and collagen I protein production compared to static groups and perfusion bioreactor. Observation of cellular sheets which filled the scaffold porosities in SEM images, approved the better cell responses to rotating & perfusion forces of the bioreactor. The outcomes demonstrated that rotating & perfusion bioreactor action on bone regeneration is much preferable than perfusion bioreactor. Therefore, it seems that exertion of multi-stimuli is more effective for bone engineering.


Assuntos
Osso e Ossos/citologia , Matriz Extracelular/química , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Reatores Biológicos , Fosfatos de Cálcio/química , Diferenciação Celular , Células Cultivadas , Desenho de Equipamento , Gelatina/química , Humanos , Osteogênese
7.
Stem Cells Int ; 2017: 8354640, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28757880

RESUMO

Adipose tissues hold great promise in bone tissue engineering since they are available in large quantities as a waste material. The buccal fat pad (BFP) is a specialized adipose tissue that is easy to harvest and contains a rich blood supply, and its harvesting causes low complications for patients. This review focuses on the characteristics and osteogenic capability of stem cells derived from BFP as a valuable cell source for bone tissue engineering. An electronic search was performed on all in vitro and in vivo studies that used stem cells from BFP for the purpose of bone tissue engineering from 2010 until 2016. This review was organized according to the PRISMA statement. Adipose-derived stem cells derived from BFP (BFPSCs) were compared with adipose tissues from other parts of the body (AdSCs). Moreover, the osteogenic capability of dedifferentiated fat cells (DFAT) derived from BFP (BFP-DFAT) has been reported in comparison with BFPSCs. BFP is an easily accessible source of stem cells that can be obtained via the oral cavity without injury to the external body surface. Comparing BFPSCs with AdSCs indicated similar cell yield, morphology, and multilineage differentiation. However, BFPSCs proliferate faster and are more prone to producing colonies than AdSCs.

8.
In Vitro Cell Dev Biol Anim ; 53(9): 818-826, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28702926

RESUMO

Adipose-derived mesenchymal stem cells (ADSCs) are adult multipotent cells able to differentiate into several cell lineages. Vascular endothelial growth factor (VEGF) and the shear stress associated with blood flow are considered as the most important chemical and mechanical cues that play major roles in endothelial differentiation. However, the stability of endothelial-specific gene expression has not been completely addressed yet. ADSCs in passage 3 were cultured inside the tubular silicon tubes and then exposed to VEGF or shear stress produced in a perfusion bioreactor. To investigate the differentiation, the expression levels of Flk-1, von Willebrand factor (vWF), and vascular endothelial-cadherin (VE-cadherin) were studied using Real-Time PCR. For studying the endothelial differentiation stability, mRNA levels of the genes were evaluated in certain time intervals after completion of the tests so as to determine whether the expression level of each gene in different time points was stable and remained constant or not. Application of VEGF and shear stress caused an elevation in endothelial cells' specific genes. Although there are some changes following the days after application of mechanical and chemical stimuli, the gene expression results depicted significantly higher gene expression between sequential chemically and mechanically incited groups. In conclusion, stress alone can be a differentiating factor, by itself. Our results verified the efficient stable differentiation ability of the chemical and mechanical factors.


Assuntos
Diferenciação Celular , Células Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Estresse Mecânico , Fator A de Crescimento do Endotélio Vascular/farmacologia , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real
9.
Mater Sci Eng C Mater Biol Appl ; 77: 1204-1215, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28531997

RESUMO

Biocompatibility of biomedical devices can be improved by endothelialization of blood-contacting parts mimicking the vascular endothelium's function. Improved endothelialization might be obtained by using biomimetic coatings that allow local sustained release of biologically active molecules, e.g. anti-thrombotic and growth-inducing agents, from nanoliposomes. We aimed to test whether incorporation of growth-inducing nanoliposomal growth hormone (nGH) and anti-thrombotic nanoliposomal sodium nitrite (nNitrite) into collagen coating of silicone tubes enhances endothelialization by stimulating endothelial cell proliferation and inhibiting platelet adhesion. Collagen coating stably immobilized on acrylic acid-grafted silicone tubes decreased the water contact angle from 102° to 56°. Incorporation of 50 or 500nmol/ml nNitrite and 100 or 1000ng/ml nGH into collagen coating decreased the water contact angle further to 48°. After 120h incubation, 58% nitrite and 22% GH of the initial amount of sodium nitrite and GH in nanoliposomes were gradually released from the nNitrite-nGH-collagen coating. Endothelial cell number was increased after surface coating of silicone tubes with collagen by 1.6-fold, and with nNitrite-nGH-collagen conjugate by 1.8-3.9-fold after 2days. After 6days, endothelial cell confluency in the absence of surface coating was 22%, with collagen coating 74%, and with nNitrite-nGH-collagen conjugate coating 83-119%. In the absence of endothelial cells, platelet adhesion was stimulated after collagen coating by 1.3-fold, but inhibited after nNitrite-nGH-collagen conjugate coating by 1.6-3.7-fold. The release of anti-thrombotic prostaglandin I2 from endothelial cells was stimulated after nNitrite-nGH-collagen conjugate coating by 1.7-2.2-fold compared with collagen coating. Our data shows improved endothelialization and blood compatibility using nNitrite-nGH-collagen conjugate coating on silicone tubes suggesting that these coatings are highly suitable for use in blood-contacting parts of biomedical devices.


Assuntos
Biomimética , Adesão Celular , Colágeno , Preparações de Ação Retardada , Hormônio do Crescimento , Silicones , Nitrito de Sódio
10.
Artif Organs ; 41(6): 556-567, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27418522

RESUMO

Stability and antithrombotic functionality of endothelial cells on silicone hollow fibers (SiHFs) are critical in the development of biohybrid artificial lungs. Here we aimed to enhance endothelial cell retention and anti-thrombotic function by low (12 dyn/cm2 , 24 h) fluid shear stress ("flow") preconditioning of endothelial cells seeded on collagen-immobilized SiHFs. The response of endothelial cells without preconditioning (48 h static culture) and with preconditioning (24 h static culture followed by 24 h flow preconditioning) on hollow fibers to high fluid shear stress (30 dyn/cm2 , 1 h) was assessed in a parallel-plate flow chamber. Finite element (FE) modeling was used to simulate shear stress within the flow chamber. We found that collagen immobilization on hollow fibers using carbodiimide bonds provided sufficient stability to high shear stress. Flow preconditioning for 24 h before treatment with high shear stress for 1 h on collagen-immobilized hollow fibers increased cell retention (1.3-fold). The FE model showed that cell flattening due to flow preconditioning reduced maximum shear stress on cells by 32%. Flow preconditioning prior to exposure to high fluid shear stress enhanced the production of nitric oxide (1.3-fold) and prostaglandin I2 (1.2-fold). In conclusion, flow preconditioning of endothelial cells on collagen-immobilized SiHFs enhanced cell retention and antithrombotic function, which could significantly improve current biohybrid artificial lungs.


Assuntos
Órgãos Bioartificiais , Materiais Revestidos Biocompatíveis/química , Colágeno/química , Células Endoteliais/citologia , Silicones/química , Engenharia Tecidual/instrumentação , Adesão Celular , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Desenho de Equipamento , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrodinâmica , Proteínas Imobilizadas/química , Pulmão/irrigação sanguínea , Pulmão/citologia , Pulmão/fisiologia , Teste de Materiais , Óxido Nítrico/metabolismo , Prostaglandinas/metabolismo , Estresse Mecânico , Engenharia Tecidual/métodos
11.
Ann Biomed Eng ; 44(8): 2417-2430, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26762283

RESUMO

Biocompatibility of artificial lungs can be improved by endothelialization of hollow fibers. Bioavailability of growth-inducing and anti-thrombotic agents on the hollow fiber-blood interface inhibits thrombosis. We investigated if nanoliposomal growth-inducing growth hormone (nGH) and anti-thrombotic sodium nitrite (nNitrite) incorporation into collagen-coating on silicone hollow fibers improves blood biocompatibility by increasing endothelial cell growth and nitrite bioavailability under flow. Nitrite production rate was assessed under varying flow conditions. Finite element (FE) modeling was used to simulate nitrite transport within the parallel-plate flow chamber, and nitrite bioavailability on the fiber-blood interface at 1-30 dyn/cm(2) shear stress. Endothelial cell number on fibers coated with nNitrite-nGH-collagen conjugate was 1.5-fold higher than on collagen-coated fibers. For collagen-coated fibers, nitrite production reached a maximum at 18 dyn/cm(2) shear stress. When fibers were coated with nNitrite-nGH-collagen conjugate, nitrite production increased continuously by increasing shear stress. FE modeling revealed that nitrite concentrations at the fiber-blood interface were affected by shear stress-induced nitrite production, and diffusion/convection-induced nitrite removal. Highest nitrite concentrations and lowest thrombus deposition were observed on fibers coated with nNitrite-nGH-collagen conjugate exposed to 6-12 dyn/cm(2) shear stress. In conclusion, our results suggest that nNitrite-nGH-Col conjugate coatings promote endothelialization of silicone hollow fibers in biohybrid artificial lungs.


Assuntos
Hormônio do Crescimento Humano , Células Endoteliais da Veia Umbilical Humana/metabolismo , Modelos Cardiovasculares , Nanoestruturas/química , Silício/química , Nitrito de Sódio , Trombose/metabolismo , Órgãos Bioartificiais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Velocidade do Fluxo Sanguíneo , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/farmacocinética , Hormônio do Crescimento Humano/farmacologia , Humanos , Lipossomos , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/fisiopatologia , Nitrito de Sódio/química , Nitrito de Sódio/farmacocinética , Nitrito de Sódio/farmacologia , Trombose/fisiopatologia
12.
J Biomed Mater Res B Appl Biomater ; 104(7): 1311-21, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26115382

RESUMO

Biomimetic coatings to increase endothelialization of blood-contacting materials in biomedical devices are promising to improve the biocompatibility of these devices. Although a stable extracellular matrix protein coating on a biomaterial's surface is a prerequisite for endothelial cell attachment, it also stimulates platelet adhesion. Therefore, antithrombotic additives, such as nitric oxide donors, to a stable protein coating might lead to successful endothelialization of a material's surface. We aimed to test whether immobilized bioactive nitrite and acidified nitrite-generating sodium nitrite-collagen conjugate on silicone tubes enhances endothelialization by increasing the number of endothelial cells as well as growth hormone production and by decreasing platelet adhesion. Stable collagen immobilization on acrylic acid-grafted silicone tubes decreased the water contact angle from 102° to 56°. Initial 25 µM sodium nitrite in conjugate resulted in maximal growth hormone production (2.5-fold increase) and endothelial cell number (1.8-fold increase) after 2 days. A 95% confluent endothelial cell monolayer on sodium nitrite-collagen conjugate coating was obtained after 6 days. Maximum (2.7-fold) inhibition of platelet adhesion was reached with initial 500 µM sodium nitrite in conjugate. Our data showing that sodium nitrite-collagen conjugate coating with 25-50 µM sodium nitrite on silicone tubes increases the number of endothelial cells attached and inhibits platelet adhesion suggest that this coating is highly promising for use in blood-contacting parts of biomedical devices. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1311-1321, 2016.


Assuntos
Materiais Biomiméticos , Plaquetas/metabolismo , Materiais Revestidos Biocompatíveis , Proteínas da Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Silicones , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Plaquetas/citologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Silicones/química , Silicones/farmacologia , Nitrito de Sódio/química
13.
Biomed Mater ; 10(1): 015024, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25730524

RESUMO

Surface modification by functional groups promotes endothelialization in biohybrid artificial lungs, but whether it affects endothelial cell stability under fluid shear stress, and the release of anti-thrombotic factors, e.g. nitric oxide (NO), is unknown. We aimed to test whether surface-modified silicone tubes containing different functional groups, but similar wettability, improve collagen immobilization, endothelialization, cell stability and cell-mediated NO-release. Peroxide, carboxyl, and amine-groups increased collagen immobilization (41-76%). Only amine-groups increased ultimate tensile strength (2-fold). Peroxide and amine enhanced (1.5-2.5 fold), but carboxyl-groups decreased (2.9-fold) endothelial cell number after 6 d. After collagen immobilization, cell numbers were enhanced by all group-modifications (2.8-3.8 fold). Cells were stable under 1 h-fluid shear stress on amine, but not carboxyl or peroxide-group-modified silicone (>50% cell detachment), while cells were also stable on carboxyl-group-modified silicone with immobilized collagen. NO-release was increased by peroxide and amine (1.1-1.7 fold), but decreased by carboxyl-group-modification (9.8-fold), while it increased by all group-modifications after collagen immobilization (1.8-2.8 fold). Only the amine-group-modification changed silicone stiffness and transparency. In conclusion, silicone-surface modification of blood-contacting parts of artificial lungs with carboxyl and amine, but not peroxide-groups followed by collagen immobilization allows the formation of a stable functional endothelial cell layer. Amine-group-modification seems undesirable since it affected silicone's physical properties.


Assuntos
Aminas/química , Materiais Biocompatíveis/química , Dióxido de Carbono/química , Colágeno/química , Células Endoteliais/citologia , Peróxidos/química , Silicones/química , Órgãos Artificiais , Adesão Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Humanos , Pulmão/patologia , Pulmão/fisiologia , Óxido Nítrico/química , Polímeros/química , Propriedades de Superfície , Resistência à Tração , Engenharia Tecidual/métodos
14.
J Biomed Mater Res A ; 103(3): 1231-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24838707

RESUMO

Current vascular grafts have a high incidence of failure, especially in the grafts less than 6 mm in diameter, due to thrombus formation. Nitric oxide (NO) is released by endothelium and has some beneficial influences such as an antithrombotic effect. We hypothesized that applying different shear stress regiments and low temperature or aspirin would result in an increase in the amount of NO release from human umbilical vein endothelial cells (HUVECs) and decrease in platelet aggregation in the same manner as expected in vivo. HUVECs were cultured into the intraluminal surface of silicone tubes. HUVECs were subjected for 60 min to different parameters of shear stress, temperature, aspirin, and platelets or a combination in a perfusion bioreactor by monitoring NO secretion. We found that shear stress leads to an elevation of NO production in HUVECS, independent of the shear stress magnitude (0.9 or 1.8 dyne/cm(2)). The magnitude of this response increased with a decrease in temperature. Our results also show that by addition of platelets in combination with aspirin to media circulation, no thrombus formation occurred during the test time. Presence of aspirin resulted in marked increase in NO levels. In conclusion, shear stresses, temperature lowering, and aspirin increase the amount of NO release from HUVECs. Also no thrombus formation was detected in our experimental setting.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Temperatura Alta , Células Endoteliais da Veia Umbilical Humana/metabolismo , Óxido Nítrico/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Resistência ao Cisalhamento
15.
J Artif Organs ; 17(4): 329-36, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25213200

RESUMO

Perfusion bioreactors have been proved to be an impartible part of vascular tissue engineering due to its broad range of applications as a means to distribute nutrients within porous scaffold along with providing appropriate physical and mechanical stimuli. To better understand the mechanical phenomena inside a bioreactor, computational fluid dynamics (CFD) was adopted followed by a validation technique. The fluid dynamics of the media inside the bioreactor was modeled using the Navier-Stokes equation for incompressible fluids while convection through the scaffold was described by Brinkman's extension of Darcy's law for porous media. Flow within the reactor determined the orientation of endothelial cells on the scaffold. To validate flow patterns, streamlines and shear stresses, colorimetry technique was used following attained results from CFD. Our bioreactor was modeled to simulate the optimum condition and flow patterns over scaffold to culture ECs for in vitro experimentation. In such experiments, cells were attached firmly without significant detachment and more noticeably elongation process was triggered even shortly after start up.


Assuntos
Células Endoteliais/fisiologia , Estresse Mecânico , Engenharia Tecidual/métodos , Alicerces Teciduais , Simulação por Computador , Hidrodinâmica , Modelos Biológicos , Perfusão
16.
Biomed Res Int ; 2013: 762132, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24000327

RESUMO

Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Biológicos , Engenharia Tecidual/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA