Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794605

RESUMO

This work inspects the utilization of all-polymer solar cells (APSCs) in indoor applications under LED illumination, with a focus on boosting efficiency through simulation-based design. The study employs a SCAPS TCAD device simulator to investigate the performance of APSCs under white LED illumination at 1000 lux, with a power density of 0.305 mW/cm2. Initially, the simulator is validated against experimental results obtained from a fabricated cell utilizing CD1:PBN-21 as an absorber blend and PEDOT:PSS as a hole transportation layer (HTL), where the initial measured efficiency is 16.75%. The simulation study includes an examination of both inverted and conventional cell structures. In the conventional structure, where no electron transportation layer (ETL) is present, various materials are evaluated for their suitability as the HTL. NiO emerges as the most promising HTL material, demonstrating the potential to achieve an efficiency exceeding 27%. Conversely, in the inverted configuration without an HTL, the study explores different ETL materials to engineer the band alignment at the interface. Among the materials investigated, ZnS emerges as the optimal choice, recording an efficiency of approximately 33%. In order to reveal the efficiency limitations of these devices, the interface and bulk defects are concurrently investigated. The findings of this study underscore the significance of careful material selection and structural design in optimizing the performance of APSCs for indoor applications.

2.
Small ; : e2401197, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38676332

RESUMO

Interface passivation is a key method for improving the efficiency of perovskite solar cells, and 2D/3D perovskite heterojunction is the mainstream passivation strategy. However, the passivation layer also produces a new interface between 2D perovskite and fullerene (C60), and the properties of this interface have received little attention before. Here, the underlying properties of the 2D perovskite/C60 interface by taking the 2D TEA2PbX4 (TEA = C6H10NS; X = I, Br, Cl) passivator as an example are systematically expounded. It is found that the 2D perovskite preferentially exhibits (002) orientation with the outermost surface featuring an oriented arrangement of TEACl, where the thiophene groups face outward. The outward thiophene groups further form a strong π-π stacking system with C60 molecule, strengthening the interaction force with C60 and facilitating the creation of a superior interface. Based on the vacuum-assisted blade coating, wide-bandgap (WBG, 1.77 eV) perovskite solar cells achieved impressive records of 19.28% (0.09 cm2) and 18.08% (1.0 cm2) inefficiency, respectively. This research not only provides a new understanding of interface processing for future perovskite solar cells but also lays a solid foundation for realizing efficient large-area devices.

3.
Microb Pathog ; 180: 106131, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121523

RESUMO

Recently nanocomposites have become a super-growth inducers as well as vital antifungal agents, which enhance plant growth and suppress plant diseases. A new strategy regarding the fabrication of humic acid (H) and boron (B) conjugated Fe2O3 nanocomposites was performed. Fe2O3 NP-B and Fe2O3 NP-H were synthesized in the presence of gamma-rays (as a direct reducing agent). Gamma-rays provoked reduction of metal ions due to the liberated reducing electrons, (e-aq), in aqueous solutions which can be considered as a direct reduction. Antifungal potential against Fusarium oxysporum, the causative agent of wilt disease in cucumber was determined. Disease index percent, metabolic resistance indicators in cucumber plant as response to promotion of systemic resistance (SR) were recorded. Results illustrated that both Fe2O3 NPs-B and Fe2O3 NPs-H nanocomposites had antifungal activity against F. oxysporumin vitro as well as in vivo. Results revealed that minimum inhibitory concentrations of Fe2O3 NPs-B and Fe2O3 NPs-H nanocomposites were 0.25 and 0.125 mM, respectively. Application of Fe2O3 NPs-B (0.25 mM) and Fe2O3 NPs-H (0.125 mM) appeared highly reduced the cucumber wilt disease symptoms incidence caused by F. oxysporum, and recorded disease severity by 83.33%. Fe2O3 NPs-B was the best treatment reducing disease indexes by 20.83% and gave highly protection against wilt disease by 75.0% and came next Fe2O3 NPs-H which reduced disease indexes by 25% and gave 69.99% protection against disease. Fe2O3 NPs-B and Fe2O3 NPs-H treatments improved morphological traits, photosynthetic pigments, osmolytes, total phenol and antioxidant enzymes activities in both infected and non-infected plants. The beneficial effects of the synthesized Fe2O3 NPs-B and Fe2O3 NPs-H nanocomposites were extended to increase not only the total phenol, and total soluble protein contents but also the activities of peroxidase (POD), and polyphenol oxidase (PPO) enzymes of the healthy and infected cucumber plants in comparison with control.


Assuntos
Cucumis sativus , Fusarium , Cucumis sativus/microbiologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
4.
Micromachines (Basel) ; 14(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838185

RESUMO

This current study aims to enhance the electrostatic MEMS converter performance mainly by boosting its output power. Three different techniques are applied to accomplish such performance enhancement. Firstly, the power is boosted by scaling up the technology of the converter CMOS accompanied circuit, the power conditioning, and power controlling circuits, from 0.35 µm to 0.6 µm CMOS technology. As the converter area is in the range of mm2, there are no restrictions concerning the scaling up of the accompanied converter CMOS circuits. As a result, the maximum voltage of the system for harvesting energy, Vmax, which is the most effective system constraint that greatly affects the converter's output power, increases from 8 V to 30 V. The output power of the designed and simulated converter based on the 0.6 µm technology increases from 2.1 mW to 4.5 mW. Secondly, the converter power increases by optimizing its technological parameters, the converter thickness and the converter finger width and length. Such optimization causes the converter output power to increase from 4.5 mW to 11.2 mW. Finally, the converter structure is optimized to maximize its finger length by using its wasted shuttle mass area which does not contribute to its capacitances and output power. The proposed structure increases the converter output power from 11.2 mW to 14.29 mW. Thus, the three applied performance enhancement techniques boosted the converter output power by 12.19 mW, which is a considerable enhancement in the converter performance. All simulations are carried out using COMSOL Multiphysics 5.4.

5.
Polymers (Basel) ; 15(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36850152

RESUMO

In this study, we present some design suggestions for all-polymer solar cells by utilizing device simulation. The polymer solar cell under investigation is formed by a photoactive film of a blend comprising PBDB-T as a polymer donor and PZT as a polymerized small molecule acceptor. The initial cell is based on a fabricated cell whose structure is ITO/PEDOT:PSS/PBDB-T:PZT/PFN-Br/Ag, which has a power conversion efficiency (PCE) of about 14.9%. A calibration procedure is then performed by comparing the simulation results with experimental data to confirm the simulation models, and the material parameters, implemented in the SCAPS (Solar Cell Capacitance Simulator) simulator. To boost the open circuit voltage, we investigate a group of hole transport layer (HTL) materials. An HTL of CuI or P3HT, that may replace the PEDOT:PSS, results in a PCE of higher than 20%. However, this enhanced efficiency results in a minor S-shape curve in the current density-voltage (J-V) characteristic. So, to suppress the possibility of the appearance of an S-curve, we propose a double HTL structure, for which the simulation shows a higher PCE with a suppressed kink phenomenon due to the proper band alignment. Moreover, the designed cell is investigated when subjected to a low light intensity, and the cell shows a good performance, signifying the cell's suitability for indoor applications. The results of this simulation study can add to the potential development of highly efficient all-polymer solar cells.

6.
Polymers (Basel) ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772085

RESUMO

Organic and perovskite semiconductor materials are considered an interesting combination thanks to their similar processing technologies and band gap tunability. Here, we present the design and analysis of perovskite/organic tandem solar cells (TSCs) by using a full optoelectronic simulator (SETFOS). A wide band gap lead-free ASnI2Br perovskite top subcell is utilized in conjunction with a narrow band gap DPPEZnP-TBO:PC61BM heterojunction organic bottom subcell to form the tandem configuration. The top and bottom cells were designed according to previous experimental work keeping the same materials and physical parameters. The calibration of the two cells regarding simulation and experimental data shows very good agreement, implying the validation of the simulation process. Accordingly, the two cells are combined to develop a 2T tandem cell. Further, upon optimizing the thickness of the front and rear subcells, a current matching condition is satisfied for which the proposed perovskite/organic TSC achieves an efficiency of 13.32%, Jsc of 13.74 mA/cm2, and Voc of 1.486 V. On the other hand, when optimizing the tandem by utilizing full optoelectronic simulation, the tandem shows a higher efficiency of about 14%, although it achieves a decreased Jsc of 12.27 mA/cm2. The study shows that the efficiency can be further improved when concurrently optimizing the various tandem layers by global optimization routines. Furthermore, the impact of defects is demonstrated to highlight other possible routes to improve efficiency. The current simulation study can provide a physical understanding and potential directions for further efficiency improvement for lead-free perovskite/organic TSC.

7.
Plants (Basel) ; 11(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956527

RESUMO

Research in plant pathology has increasingly focused on developing environmentally friendly, effective strategies for controlling plant diseases. Cyanobacteria, including Desmonostoc muscorum, Anabaena oryzae, and Arthrospiraplatensis, were applied to Capsicum annuum L. to induce immunity against Fusarium wilt. Soil irrigation and foliar shoots (FS) application were used in this investigation. The disease symptoms, disease index, osmotic contents, total phenol, Malondialdehyde (MDA), hydrogen peroxide (H2O2), antioxidant enzymes (activity and isozymes), endogenous hormone content, and response to stimulation of defense resistance in infected plants were assessed. Results demonstrated that using all cyanobacterial aqueous extracts significantly reduced the risk of infection with Fusarium oxysporum. One of the most effective ways to combat the disease was through foliar spraying with Arthrospira platensis, Desmonostoc muscorum, and Anabaena oryzae (which provided 95, 90, and 69% protection percent, respectively). All metabolic resistance indices increased significantly following the application of the cyanobacterial aqueous extracts. Growth, metabolic characteristics, and phenols increased due to the application of cyanobacteria. Polyphenol oxidase (PPO) and peroxidase (POD) expressions improved in response to cyanobacteria application. Furthermore, treatment by cyanobacteria enhanced salicylic acid (SA) and Indole-3-Acetic Acid (IAA) in the infected plants while decreasing Abscisic acid (ABA). The infected pepper plant recovered from Fusarium wilt because cyanobacterial extract contained many biologically active compounds. The application of cyanobacteria through foliar spraying seems to be an effective approach to relieve the toxic influences of F. oxysporum on infected pepper plants as green and alternative therapeutic nutrients of chemical fungicides.

8.
Micromachines (Basel) ; 13(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35744482

RESUMO

In this current study, the validation and evaluation of a behavioral circuit model of electrostatic MEMS converters are presented. The main objective of such a model is to accurately find the converter behavior through the proper choice of its circuit elements. In this regard, the model enables the implementation of the electrostatic MEMS converter using commercially available off-shelf circuit elements. Thus, the overall vibration energy harvesting system can be implemented and tested without the need for fabricating the converter. As a result, the converter performance can be verified and evaluated before its fabrication which saves the expenses of fabricating trailed prototypes. To test the model, we apply it to an enhanced converter in which the conventional electrostatic MEMS converter is modified by depositing the tantalum pentoxide, Ta2O5, a high dielectric constant material, on its fingers' sidewalls. Such a deposition technique causes an appreciable increase in the overall converter capacitance and, in turn, the output power, which is boosted from the range of µw to the range of mW. Next, the converter behavioral circuit model, which is based on representing its capacitances variations with respect to the input displacement, x caused by the vibration signal, C-x curve, is built up. The model is qualitatively validated and quantitatively evaluated. The enhanced converter performance is investigated through the interaction of its model with the power conditioning circuit. From the simulation results, it is revealed that the converter behavioral circuit model accurately accomplishes the vibration energy conversion operation. As a result, the specification of the required controlling pulses for the converter operation is accurately determined. Finally, the model accuracy is validated by calibrating its performance with a traditionally simulated and fabricated electrostatic MEMS converter.

9.
J Biomol Struct Dyn ; 40(8): 3560-3580, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33200676

RESUMO

A novel lectin was purified from newly cyanobacterium isolate, Oscillatoria acuminate MHM-632 MK014210.1 using affinity chromatography with a molecular weight of 120 kDa under native-PAGE and 30 kDa on reducing-PAGE, represented tetramer nature of this lectin. Oscillatorial lectin showed stability at 60 °C for 30 min, pH-dependent, with the highest activities over the pH range of 6-8, and required zinc ions to express its full activity. Oscillatorial lectin is a glycan-binding protein with a neutral carbohydrate content of 7.0% as evaluated by the phenol-sulfuric acid method. Polyols and α- glycosides polymer of mannose sugar or sugars alcohol were completely inhibited oscillatorial lectin with MIC of 0.195 mM, while ß-glycosides sugars did not show any inhibition effect. The oscillatorial lectin has anti-proliferative activity against Huh-7 and MCF-7 cancer cells and inhibited their proliferation with EC50 values of 106.75 µg/ml and 254.14 µg/ml, respectively. Besides the anticancer effect, oscillatorial lectin also has potent antiviral activity against HSV-1 in a dose-dependent manner via virions neutralization and inhibition of viral replication with IC50 values of 90.95 ng/ml and 131.3 ng/ml, respectively. The unique carbohydrate affinity of oscillatorial lectin provides insight into its use as a promising candidate in many biotechnological applications, like fighting viral infection and combating cancer disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Lectinas , Oscillatoria , Antivirais/farmacologia , Bactérias , Carboidratos/química , Glicosídeos , Humanos , Lectinas/química , Lectinas/farmacologia , Manose/química
10.
J Biomol Struct Dyn ; 40(6): 2828-2850, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33164673

RESUMO

Cyanobacteria are photosynthetic, Gram-negative bacteria that are considered one of the most morphologically diverse groups of prokaryotes with a chief role in the global nutrient cycle as they fixed gaseous carbon dioxide and nitrogen to organic materials. Cyanobacteria have significant adaptability to survive in harsh conditions due to they have different metabolic pathways with unique compounds, effective defensive mechanisms, and wide distribution in different habitats. Besides, they are successfully used to face different challenges in several fields, including industry, aquaculture, agriculture, food, dairy products, pollution control, bioenergy, and pharmaceutics. Analysis of 680 publications revealed that nearly 1630 cyanobacterial molecules belong to different families have a wide range of applications in several fields, including cosmetology, agriculture, pharmacology (immunosuppressant, anticancer, antibacterial, antiprotozoal, antifungal, anti-inflammatory, antimalarial, anticoagulant, anti-tuberculosis, antitumor, and antiviral activities) and food industry. In this review, we nearly mentioned 92 examples of cyanobacterial molecules that are considered the most relevant effects related to anti-inflammatory, antioxidant, antimicrobial, antiviral, and anticancer activities as well as their roles that can be used in various biotechnological fields. These cyanobacterial products might be promising candidates for fighting various diseases and can be used in managing viral and microbial infections.Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Cianobactérias , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Antivirais/metabolismo , Biotecnologia , Cianobactérias/metabolismo , Humanos
11.
Micromachines (Basel) ; 12(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34442595

RESUMO

One of the most important challenges in the design of the piezoelectric energy harvester is its narrow bandwidth. Most of the input vibration sources are exposed to frequency variation during their operation. The piezoelectric energy harvester's narrow bandwidth makes it difficult for the harvester to track the variations of the input vibration source frequency. Thus, the harvester's output power and overall performance is expected to decline from the designed value. This current study aims to solve the problem of the piezoelectric energy harvester's narrow bandwidth. The main objective is to achieve bandwidth broadening which is carried out by segmenting the piezoelectric material of the energy harvester into n segments; where n could be more than one. Three arrays with two, four, and six beams are shaped with two piezoelectric segments. The effect of changing the length of the piezoelectric material segment on the resonant frequency, output power, and bandwidth, as well as the frequency response is investigated. The proposed piezoelectric energy harvesters were implemented utilizing a finite element method (FEM) simulation in a MATLAB environment. The results show that increasing the number of array beams increases the output power and bandwidth. For the three-beam arrays, at n equals 2, 6 mW output power and a 9 Hz bandwidth were obtained. Moreover, the bandwidth of such arrays covered around 5% deviation from its resonant frequency. All structures were designed to operate as a steel wheel safety sensor which could be used in train tracks.

12.
Int J Biol Macromol ; 161: 417-430, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526302

RESUMO

In the present study, a novel lectin was purified from the newly isolated cyanobacterium, Lyngabya confervoides MK012409 and tested for its antiviral and anticancer activity. Out of 30 isolates, Mabroka-s isolate which identified as Lyngabya confervoides MK012409 showed the highest agglutination titer. Lyngabyal lectin showed the greatest haemagglutination activity with pigeon/rabbit erythrocytes with a minimum concentration of 2.4 µg/ml. Physical characterization of Lyngabyal lectin showed ability to keep the activity at a higher temperature up to 80 °C with stability over a wide pH range (4-8) as well as its stability toward chemical denaturants. Carbohydrate specificity test revealed that the sugar alcohols completely inhibited the lectin haemagglutination activity. The electrophoretic analysis revealed that the lyngabyal lectin is a 140 kDa composed of two 70 kDa subunits. Lyngabyal lectin was able to inhibit the proliferation of MCF-7 and Caco-2 cancer cell lines with IC50 values of 246 ± 0.17 and 376.4 ± 0.34 µg/ml, respectively. Lyngabyal lectin also showed virucidal activity against HSV-1 with EC50 of 167 ± 0.52 ng/ml and inhibited plaque formation in the HSV-1 infected Vero cells with EC50 of 84.94 ± 0.34 ng/ml. These findings emphasize the ability of the lyngabyal lectin to fight breast and colon cancer besides it represents a promising antiviral agent.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Cianobactérias/química , Hemaglutinação/efeitos dos fármacos , Lectinas/farmacologia , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Galinhas , Chlorocebus aethiops , Columbidae , Testes de Hemaglutinação/métodos , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Coelhos , Células Vero
13.
Anticancer Agents Med Chem ; 19(5): 620-626, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799796

RESUMO

BACKGROUND: In a continuous combat against cancer, which is one of the leading causes of mortality now, chalcone and Schiff bases moieties have been incorporated and their antiproliferative activities and associated mechanisms against liver (HepG2) and breast (MCF-7) cell lines in addition to normal fibroblasts (WI-38) have been examined. METHODS: Derivatives 4 and 5 of Schiff bases only and chalcone derivatives of Schiff bases 1 and 2 were devoid of any antiproliferative activity. All three compounds (3, 6, and 7) with significant antiproliferative activity were selective and caused no growth inhibition in normal fibroblasts. Derivative 3 was a chalcone only with IC50 of ~20 µM and has a very interesting signature where it enhanced apoptosis in HepG2 by stimulating the expression of downstream execution caspase 3 without affecting neither p53 nor initiator caspase 9. In spite of the structural similarity between compounds 6 and 7, compound 6 discerned itself with a unique IC50 of ~ 10 µM. RESULTS: The antiproliferative activity of derivative 6 could be attributed to its unique capability of formation of free radicals such as phenoxide radicals which arrested the cell cycle through enhancing the expression of p53 and induced apoptosis by induction of both caspases 9 and 3. It was the only investigated derivative that inhibited the tyrosine kinase activity by 89%. CONCLUSIONS: The antiproliferative activity of the compounds under investigation considerably depended on the nature of the substituent at position 4 in phenyl rings of both chalcone and Schiff base fragments. Derivative 6 with electron withdrawing chlorine substitution on the phenyl ring of Schiff base fragment and an electron donating methoxy group on the phenyl ring of chalcone fragment was the most active member.


Assuntos
Proliferação de Células/efeitos dos fármacos , Chalconas/farmacologia , Bases de Schiff/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Chalconas/química , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Células MCF-7 , Bases de Schiff/química
14.
Arch Pharm (Weinheim) ; 346(10): 766-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24105721

RESUMO

A facile one-pot four-component reaction was utilized to construct 2-oxo-1,2-dihydropyridine-3-carbonitrile as a scaffold for the synthesis of many fused heterocyclic systems, namely, furopyridine, pyridothiadiazepinthione, and pyridotriazine, as well as non-fused heterocyclic systems such as phthalazin-2(1H)-ylnicotinonitrile, pyridin-2-yl-1H-pyrazole, and pyrazol-1-ylnicotino-nitrile,1-(3-cyanopyridin-2-yl)-1H-pyrazole. The new compounds were evaluated as antimicrobial and antiviral agents.


Assuntos
Antibacterianos/farmacologia , Antivirais/farmacologia , Compostos Heterocíclicos/farmacologia , Piridinas/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Linhagem Celular Tumoral , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA